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ABSTRACT WAVELETS GENERATED BY HILBERT SPACE
SHIFT OPERATORS

CARLOS S. KUBRUSLY AND NHAN LEVAN

ABSTRACT. An abstract wavelet is a nonzero vector w in a Hilbert space H
that generates an orthonormal basis for H in terms of a pair {D, T} of non-
commuting bilateral shifts of infinite multiplicity on H such that DT2 = TD.
Properties of such an abstract wavelet, as well as decompositions of the Hilbert
space ‘H on which w lives, are investigated. It turns out that these properties
are precisely those of £L2(R)-wavelets.

1. INTRODUCTION

We show in this paper that the concept of £2(IR)-wavelets can be extended to
abstract wavelets — to be defined as wavelets on abstract Hilbert spaces. An £L2(R)-
wavelet is a function () € £L2(R) that generates a double indexed orthonormal
basis {¥mn(-)}, (m,n) € Z x 7Z, for the separable Hilbert space L£2(R) [16] (see
also [3], [19] and the references therein). The generating process is achieved by two
bilateral shifts of infinite multiplicity. It will be seen that an abstract wavelet has
all properties of an £2(R)-wavelet.

Basic notions, notation and terminology are posed in Section 2. Results on span
of images of sets under invertible operators, which will play a crucial role in the
sequel, are considered in Section 3. Equivalent definitions and essential properties
of Hilbert space bilateral shifts are discussed in Section 4. Abstract wavelets are
then introduced in Section 5 as nonzero vectors that generate orthonormal bases for
Hilbert spaces in terms of two noncommuting bilateral shifts of infinite multiplicity
D and T such that D intertwines T2 to 7. Wavelet expansions are taken up in
Section 6. There we show that an abstract wavelet vector, and the orthonormal
basis of vectors generated by it, result in two families of orthogonal subspaces that
decompose the underlying Hilbert space. Further properties of these subspaces are
investigated in Section 7. We close the paper by considering projections on wavelets
in Section 8. These, in the case of £2(R)-wavelets, result in the so-called Discrete
Wavelet Transform (DWT) for Signal Processing.

2. PRELIMINARIES

Let H be a (complex, infinite-dimensional, but not necessarily separable) Hilbert
space. By a subspace of H we mean a closed linear manifold of H, and by an oper-
ator on H we mean a bounded linear transformation of H into itself. Let B[H] be the
unital Banach algebra of all operators on H. Take any L € B[H] and let L* € B[H)]

Date: July 18, 2005.

2000 Mathematics Subject Classification. Primary 47A15; Secondary 42C40.

Keywords. Bilateral shifts, Hilbert space, invariant subspaces, orthogonal decomposition,
unitary operators, wavelets, wandering subspaces.

1



2 CARLOS S. KUBRUSLY AND NHAN LEVAN

denote the adjoint of L. The linear manifold ran L = L(H) is the range of L, and
the subspace ker L = L=1({0}) is the kernel (or null space) of L. An isometry
is an operator V € B[H] such that |Vz| = ||z|| for every x € H or, equivalently,
such that V*V = I, where I denotes the identity in B[H]. Recall that isometries
preserve inner product. An invertible operator is one that has a bounded inverse,
and a unitary operator is an invertible isometry (equivalently, an invertible operator
U such that U~! = U*). The orthogonal complement H © M of a subspace M of
H will be denoted by M*. If {M,} is any indexed family of pairwise orthogonal
subspaces of H (i.e., Mo L Mg whenever a # (3), then their direct sum ., M,
(the Hilbert space consisting of all square-summable families of vectors in H with
each vector in each M,,) is unitarily equivalent to their topological sum; that is,

Q?M7 S (;Mv)_ - (span{LyJM,y})_ - \V/Mv,

where = stands for unitary equivalence. (As usual, we shall write = for =.)
Throughout the paper, indices m, n, j, k will always run over the set of all integers
Z, unless otherwise specified.

3. SPAN OF IMAGES

The (linear) span of a subset A of H, denoted by span A, is the linear manifold of
'H consisting of all (finite) linear combinations of vectors in A; its closure (span A)~
(also referred to as the span of A) is a subspace of H, usually denoted by \/A.

Lemma 1. If A is any set of vectors in ‘H and L is an operator on H, then
(L \/A) S =\rA
Proof. Since L is continuous,
L(span A)~ C (Lspan A)

(see e.g., [11, Problem 3.46]). Thus

L\/A = L(span A)~ C (LspanA) C (L(spanA)”) = (L \/A)_,

and hence

(L \/A) = (LspanA) .
But L is linear and span A consists of finite linear combinations. Therefore,
L span A = span LA.

The above two identities ensure that
(L \/A) = (span LA) T = \/ LA. |

Remark 1. Observe that, for any set A of vectors in H and any operator L on H,

L\/Aac\/rA.
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Corollary 1. Take any set A of vectors in 'H and let L be an operator on H.

(a) L \/A is closed
if and only if

(b) L\/A=\/LA.

Proof. (a) implies (b) by Lemma 1. The converse is trivial. |

Corollary 2. Take any set A of vectors in H. If an operator L on H is a closed
mapping (i.e., takes closed sets into closed sets), then

L\/A=\/LA.

Proof. \/ A is closed and so is L \/ A if L is a closed mapping. Apply Corollary 1. O

Corollary 3. If A is any set in H and L is an invertible operator on H, then
L\/A=\/LA.

Proof. If L is invertible (with a bounded inverse), then it is a closed mapping (see
e.g., [11, Theorem 3.24]) so that we can apply Corollary 2. O

Corollary 3 will be applied often in the sequel. We might be tempted in applying
Corollary 1 for operators with closed ranges, in particular, for isometries or orthog-
onal projections. However, these are not necessarily closed mappings. The remark
below uses orthogonal projections to show that Corollary 2 is the best we can have
as far as “moving operators inside spans” is concerned.

Remark 2. Recall that the range of a continuous projection (in particular, of an
orthogonal projection) is a (closed) subspace. Question: Are orthogonal projections
closed mappings? In particular, is the image P(N) of a (closed) subspace N of H
under an orthogonal projection P: H — H a (closed) subspace of H? The answer
is “No”. Therefore (Corollary 2), with /' = \/A, it may happen that

P\/A #+ \/PA (i.e., proper inclusion: P\/A C \/PA).
Example. Let {e,}72; be the canonical orthonormal basis for H = (%, put
v = (1 - 7%) % ean—1 + Fea
for each k£ > 1 and consider the following subspaces of H.
M=V{ex1}iZ, and N =V{u}iL,.

Let P: H — 'H be the orthogonal projection onto M+ = \/{ea;}3, (i.e., tan P =
M- and so ker P = M). Observe that

PN)C M+ N,

Indeed, if v € N, then v = )", a,vy so that
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1 1)1
Pv = E apPu, = E Qg€ = E QUL — E ak(l — F) 2 eop_1-
k k k k

Now put @, = > p_; 1€2k = > p_y Pvr = P(Xj_; vk) for each n > 1 so that {z,}
is a sequence of vectors in P(N'). Note that {z,,} converges in £? to z = > 77| +eay
in /2. However, z ¢ M + N (cf. [11, Problem 5.13]) so that = ¢ P(N). Thus the
Closed Set Theorem ensures that P(A) is not closed.

4. BILATERAL SHIFTS

There are some alternative (but equivalent) ways of defining bilateral shifts on a
Hilbert space (see e.g., [2], [4], [6], [8], [10], [15], [21]). One of them goes as follows.

Definition 1. An operator S on H is a bilateral shift if there exists an infinite
family {W;} indexed by Z of nonzero pairwise orthogonal subspaces of H that
spans H and S maps each W; isometrically onto Wi 1.

That is, an operator S on H is a bilateral shift if there exists a family {Wk }xez
of nonzero subspaces of ‘H satisfying the following conditions.
(a) W; LW, whenever j # k,
(b) Vy Wi =H  (which, according to (a), means @, Wi = H),
(¢) Slw,: Wk — Wiy1 is a unitary transformation for each k.

Condition (c) ensures that {W}} is a family of unitarily equivalent subspaces, and
so these subspaces W, are all of the same dimension. (Note: here dimension means
“orthogonal” dimension: cardinality of any orthonormal basis.) This common di-
mension (the constant dim W) is the multiplicity of S. With respect to the (orthog-
onal) direct sum decomposition H = @,-_ . Wi of conditions (a) and (b), S is
identified with the following (doubly) infinite matrix of transformations (the inner
parenthesis indicates the zero-zero entry),

0 o U
. o U
d 5= 6
Us (0) an 0) U ’
U, 0 0

where every entry directly below the main block diagonal in the matrix of .S, namely,
Ui = S|w,, is unitary as in (c) and the remaining entries are all null. Thus it is
readily verified that $*S = SS* = I, which means that a bilateral shift .S is unitary.

A subspace W of H is wandering for any operator L on H (or L-wandering) if

W L L™W for all positive integers n.

Proposition 1. If U is a unitary operator, then W is U-wandering if and only if
UW L U*W whenever j # k.
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Proof. Let U be a unitary on H and take arbitrary integers j and k in Z. Since
U is invertible and its inverse is unitary, it follows that U7 is unitary. Recall that
unitary operators preserve inner product. Thus, for any subspaces W and M of H,

WIM <« UWLUM.

Then, for each integer n > 1, W L U™W if and only if U’W L U+t"W so that
WLUW <= U’W LU*W whenever j # k. |

If U is a unitary operator on H and W is a U-wandering subspace of H such that
{U*W)} spans H, then we say that W is a generating wandering subspace. In other
words, a U-wandering subspace W of H (for some unitary U € B[H]) is generating
if (cf. Proposition 1)

\/ UW =H  or, equivalently, GB UwW =H.
k k

Let S be a bilateral shift as in Definition 1. Since S is unitary, and
Wj 1 W, and Wik = S"Wy

for every k, m and every j # k, all in Z, it also follows by Proposition 1 that Wy is
S-wandering, and so a generating wandering subspace for S by (a), (b). That is,

STWy L S¥Wy whenever j#k and \/SkWo =H.
k

Moreover, the multiplicity of S is precisely the dimension of Wy. According to (b)
‘H is separable if and only if Wy (equivalently, any W;) is separable. In this case, a
shift of countable multiplicity p is the (countable, orthogonal) direct sum of u shifts
of multiplicity one. Recall that two shifts have the same multiplicity if and only if
they are unitarily equivalent, and that a finite power n of a shift of multiplicity wu
is again a shift, now of multiplicity nu (see e.g., [6, Section 1] and [10, Chapter 2]).
Thus a shift of (finite) even multiplicity has a unique square root that is again a
shift, and so has a shift of countably infinite multiplicity (see e.g., [9, p.273]). Next
we consider an equivalent definition of a bilateral shift (see e.g., [2, Chapter 6]).

Definition 2. A bilateral shift S on H is a unitary operator for which there is
subspace V of H (called outgoing subspace) satisfying the following conditions.

i Sycy,

(ii) N, S*V = {0},

(i) (U,S™V) =H.

It is worth noticing that condition (iii) in fact means \/, S¥V = H — recall that
V, S*V = (span { |, S¥*V})~. Indeed, the family of subspaces {S*V} is decreasing
(i.e., S¥1Y C S*V) by condition (i), and hence | J,S*V = span { |, S¥V}. More-
over, since U* is unitary whenever U is unitary, a bilateral shift can be similarly
defined in terms of is adjoint S* = S~! by replacing the above conditions with

i) V' c sV,
(it') M, S*V" = {0},
(iii") (UpS*V') =H,
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where the subspace V' of H is referred to as incoming subspace. Indeed, put
V' =SV.

Since S is unitary, it has a continuous inverse, and so the linear manifold V' is as
closed as V (V' is a subspace of H whenever V is). Note that S*V' = S*(SV) = V.
Since SV C V by (i), we get V' = SS*V' = SV C ¥V = 5*V'. This shows how
(1) implies (i'); the converse follows by the same argument once S is unitary. The
equivalence between (ii) and (ii’), and also between (iii) and (iii’), are trivially ver-
ified since S*¥V' = SkT1Y and S*V = §*S*V' = S¥~1)’. Observe that the family
of subspaces {S**V'} is an increasing family (i.e., S**V’ ¢ S**+1DV’) according to
condition (i’). Actually, conditions (i) and (i’) are equivalent to

(i) SEY c sty and (") S*kY’ ¢ gDy

for every k in Z, respectively. The link between Definitions 1 and 2 is given by the
following result. (For a proof see, for instance, [12] and the references therein; in
particular, see [8] and [15]).

Proposition 2. Let S be a unitary operator on a Hilbert space H as in Definition
2 and let V be the outgoing subspace. Then

Wo=Ve SV

is a generating wandering subspace for S such that
V=P S W,
n=0
and S is a bilateral shift as in Definition 1 with Wy, = S*W, for each k in Z.

Remark 3. Since the incoming space V' = SV is such that S*V' =V, dual expres-
sions of those in the above proposition read as follows.

Wo=8V eV and V="MW= "W
n=1 n=-—1

5. WAVELET VECTORS

For simplicity we shall assume, from now on, that H is a separable Hilbert
space so that shifts of infinite multiplicity on H are necessarily of countably infinite
multiplicity. The basic assumption is: suppose

(Ao) D and T are bilateral shifts on H of infinite multiplicity.

Thus D and T are unitarily equivalent. Assume that the unitarily equivalent shifts
D and T do not commute but D intertwines T? to T so that T? is unitarily equiv-
alent to T wvia the unitary D. That is, suppose

(Ay) DT#TD and DT?=TD.

The next proposition exhibits a collection of conditions equivalent to D T? = T'D
in Assumption (Aq).
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Proposition 3. The following assertions are pairwise equivalent.
(a) DT?=TD,
(b) D™T?"=TD™ for every m € Z,
(c) T35 D™ = D™T for every m € 7,
(') DT?*™ =T"D for everyn € Z,
(b)) D™T"2"=T"D™ for every m € Z and every n € 7,
(¢) T37% D™ = D™T™ for every m € 7 and every n € Z.

Proof. Note that any of the above assertions trivially implies (a). Thus we shall
show that each of them is implied by (a). To verify that (a) implies (b) proceed as
follows. If DT? = TD, then D"T?" = TD" holds tautologically for n = 0,1 and,
if this holds for some n > 1, then it holds for n + 1. Indeed,

D2 = pprr?2— ppnT? T2 = DTDT? = DT2D" = TDD" = TD".,
which proves by induction that
DT?=TD implies D"T?"=TD" for every n > 0.

Since T is a bilateral shift of infinite multiplicity, it has a unique iterative square
root, which means that there exists a unique square root (Tz_%l)% of T=" for each
n > 0. In this case, it also follows that,

DT? =TD implies D—"T% =TD™™ for every n > 1.

Indeed, T2 = (D~'T2D)? so that (uniqueness of the square root) T = D=1z D,
and hence the sought result holds for n = 1. If it holds for some n > 1, then
(T’wﬁ)2 = T3 = D"TD™" = (D"T3D~™)2 so that (uniqueness of the square
root again) T#T = D"TiD~" = D"DTD~'D~", and hence the sought result
holds for n+1 (i.e., D) — TD~(*+D) which completes the proof by
induction. From the above two implications we can infer that (a) implies (b). Now,
to show that (b) implies (c¢), multiply (b) by D™ both from left and from right,
and replace m with —m (since (b) holds for every m € Z) to get the form in (c).
Next, to prove that (a) implies (a’), observe that (a’) is a tautology for n = 0, (a)
implies (a’) for n = 1 trivially and, if (a’) holds for some n > 1 then, by (a),

DT*"t) = pT*? = T"DT? =T"TD = T"1' D,
which proves by induction that
DT?=TD implies DT?" =T"D for every n >0,

and therefore T-"D = DT 2" for every n > 0 because T is invertible. Thus (a)
implies (a’). Since T™ is a bilateral shift of infinite multiplicity for every n > 0,
it follows that (a’) implies (b’) as (a) implies (b), and so (b") implies (¢’) as (b)
implies (c). O
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Remark 4. Recall that (L71)* = (L*)~! and (L=1)" = (L™)~! (denoted L") for
every invertible operator L and every integer n € Z; also (L™)* = (L*)™ (denoted
L*™) for every operator L and every integer n > 0 (or every integer n € Z if L is
invertible); and that L* = L~! if L is unitary. Thus assertions (a), (b), (c), (a’),
(b") and (c’) of Proposition 3 are equivalent to
(a*) DT*2=T*D,

(b*) D™T*?"=T*D™ for every m € Z,
(c*) T*3% D™ = DT* for every m € Z,
(a¥) DT**" =T*"D for every n € 7Z,

) DT = T*nD™ for every m € Z and every n € Z,

) T*2n D™ = D™T*" for every m € Z and every n € Z,

respectively. Therefore, assertions (a), (b), (c), (a’), (b’) and (¢’) of Proposition 3
and the above (a*), (b*), (¢*), (a*), (b*) and (c*') are all pairwise equivalent.

Moreover, also assume that { D™ T"w} (m nyezxz is a (double indexed, countable)
orthonormal basis for the (separable) Hilbert space H for some nonzero vector w
in H. That is, suppose there exists 0 # w in ‘H such that

(a) D™T™w L DiIT*w  whenever (m,n) # (j,k) in Z x Z,
(Ag) (b) |ID™T™w||=1 for every (m,n)€ZxZ,
(©) VpnoD"T"w =H.

Definition 3. If D and T are operators on H satisfying Assumptions Ag and A,
then any nonzero vector w in H that makes {DmT”w}(m,n)erZ an orthonormal
basis for H as in Assumption Aj is a wavelet (or an orthogonal wavelet), and the
vectors W, , = D™T"w are the wavelet vectors generated from the wavelet w.

Remark 5. 1If H represents some concrete Hilbert space of functions, then the term
“wavelet functions” is used instead of “wavelet vectors”. For instance, if H = L2(R)
and z € L%(R), then the operators D and T on £2(R) defined by

y=Dz with y(t)=v2x(2t)
and
y=Tz with y)==z(t—-1)

(for almost all ¢ in R with respect to Lebesgue measure) are bilateral shifts on £2(RR)
satisfying Assumptions Ag and Ay (see [5, p.4] for discussions on Assumption Ay).
A well-known wavelet associated with the above operators is the so-called Haar
wavelet (e.g., [19, p.248]), the function w in £2(R) defined (almost everywhere) by
1; 0<t< %,
wlt)=9 -1 g<t<l
0; t € R\(0,1].

More generally, for any real number « let T, on £2(IR) be defined by
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y=Tex with y()=2z(—a)

almost everywhere in R. It is readily verified that this is again a bilateral shift on
L%(R) — the shifting unit is now « rather than 1 — that together with D satisfy
Assumption A;. Note that any integer power, say n, of T, coincides with T,:

T7 =T forevery n€Z and o € R,

and hence the identities of Proposition 3(b,c) are given by

D™Tomg =T, D™ and T.o D™ = D™T,
>
for every m € Z and every a € R.

6. WAVELET EXPANSION

Now take an arbitrary = € H and consider the following families {W,,(z)}mez
and {H,(x)}nez of subspaces of H.

6.1. The subspaces W,,(x). For each vector x € H let {W,,(z)}mez be a family
of subspaces of H defined by

Wo(x) = \/T”x and W, (z) = D™"Wy(z) = D™ \/T”x for each m € Z,

where the spans run over all integers n in 7Z, so that
Win(2) = W (TFz)  and  Wyik(z) = DWW, (x)  for each m, k € Z.
According to Corollary 3, these subspaces can also be written as

Wn(z) = \/ D™T"x  for each m € Z.

n

We shall see below that if w € H is a wavelet, then {W,,(w)} is a family of
pairwise orthogonal subspaces, and this implies that each W, (w) is not D-invariant
nor D*-invariant because D W,,(w) = Wyp41(w) and D*W,,11(w) = Wi, (w).

Proposition 4. If w is a wavelet, then Wo(w) is a generating wandering subspace
for the bilateral shift D so that {Wpn(w)} is the family of subspaces that actually
define the bilateral shift D as in Definition 1. That is,

(a) Wj(w) L Wy, (w) whenever j # m,
(b) V,, Wm(w)="H (which, according to (a), means @, W (w) = H),

(¢) Dlw,, : Wn(w) = Wpi1(w) is a unitary transformation for each m.

Proof. By linearity in the first argument and continuity of the inner product, and
also by Corollary 3, it follows from Assumption As(a) that, whenever m # j,

D" Wo(w) = W(w) = \/ D™T"w L \/ DIT*w = W;(w) = D' Wy (w).
n k
Then Wy(w) is a wandering subspace for the unitary operator D according to
Proposition 1, which in fact is a generating subspace by Assumption As(c). In-
deed, by unconditional convergence of the Fourier series (for the double indexed
orthonormal basis { D™T"w} for the Hilbert space H of Assumption As) we get
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\/ D" Wy (w \/ \/DmT”w = \/ \/ D"T™w = \/ D"T"w ="H.

m m,n

Thus assertions (a) and (b) follow by the very definition of the subspaces W,,(w),
and assertion (c) follows from the fact D|yy, , is and isometry (reason: restriction
of an isometry to any subspace is again an isometry), which is surjective (again, by
the very definition of W,,(w)) so that D|yy,, is a unitary transformation. O

m

Remark 6. Consider the setup of Proposition 4. Note that the incoming space V(w)
of Definition 2 (with respect to the bilateral shift D) is, by Proposition 2,

@ D" W (w @w = \/ Wa(w)
n=0
where the third identity follows from Proposition 4(a) so that, by Corollary 3,

DMV (w \/ D*W, (w \/ Wk (w \/ Wa(w) for each ke Z

n=0

and all conditions of Definition 2 are verified, as expected. Indeed,
(i) DMV (w) =Vl Wa(w) C Vol Wa(w) = DFV(w) for every k € Z,
(ii) Ny D*V(w) = {0} (cf. matrix representation of the bilateral shift D),
(iii) (U D*V(w)) =V, D*V(w) =/, Wi(w) =H  (cf. Proposition 4(b)).

If w € H is a wavelet, then Proposition 4(a,b) supplies an orthogonal direct sum
decomposition of H into {W,,(w)} (also see [1], [7], [13], [14], [17], [18] and [20]),

H=EPWnw) =\ Wanw) =\/\/D"T"w="\/ D"T"w

which is referred to as a wavelet expansion. Indeed, for each pair of integers (m, n) in
7 x 7. consider the wavelet vector w, , = D™T"w € H generated from the wavelet
w € H. Thus, according to Assumption As, every vector x € H has a Fourier series
expansion T = Zm’n@;wm,n}wm?n in terms of the double indexed orthonormal
basis {w, »} for H generated from the wavelet w as in Definition 3. Note that, as
it happens for any double indexed orthonormal basis {w., } for a Hilbert space
‘H, the Fourier series expansion of every vector x in H has a “Fubini-like” property
where the summation order can always be interchanged,

T = § § <x;wm,n>wm,n: § <x wmn Wm,n = § E X, wmn Wm,n,
m n

m,n

due to the unconditional convergence of the Fourier series.

6.2. The subspaces H,(x). For each vector z € H let {H,(z)}nez be a family
of subspaces of H defined by

= \/Dma: and  H,(z) = Ho(T"x) \/DmT” for each n € Z,

where the spans run over all integers n in Z, so that (cf. Corollary 3)

Hn(z) = D¥H,(x)  and  Hppx(z) = Ho(TFz)  for each n,k € Z.
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An important feature of these subspaces is that, for any vector € H (in partic-
ular, for a wavelet w € H), each H,(x) reduces D, which means that each H,(x)
is both D-invariant and D*-invariant. In fact, D* = D~! and D*™'H,,(z) = H, ()
(according to the above consequence of Corollary 3) for every n € Z.

Recall that, if w is a wavelet, then {W,,(w)} is a family of pairwise orthogonal
subspaces of H that are not D-invariant, and so they cannot be used to decompose

the bilateral shift D. The next result explores the fact that {H,, (w)} is again a fami-
ly of pairwise orthogonal subspaces spanning H, thus another wavelet expansion,

\/ DT w =\ Wi (w) = @ Wan(w) = H = @ Hn(w) =\/Hn(w)=\/D"T"w

m,n n,m

(also see [13], [14], [17] and [18]), which has the extra property of reducing D.

Theorem 1. If w € H is a wavelet, then {H,(w)} is a family of pairwise orthog-
onal subspaces of H that spans H:

H =P Hn(w).
Moreover, each Hy(w) reduces D so that

D =P Dn(w),

with each Dyp(w) = Dy, () being a bilateral shift of multiplicity one acting on each
subspace Hp(w).

Proof. Since {D™T"™w}(m n)ezxz is an orthonormal basis for H, it follows that
{Hn(w)} is a family of pairwise orthogonal subspaces of H, and Theorem 1 from [14]
ensures that €, Wm(w) = @, Hn(w). Thus H = @, Hn(w) by Proposition 4(b).
Furthermore, as we saw above, each Hy,(x) reduces D so that D = @, Dl (w)-
Putting Dy (w) = Dl () for each n we get

Dy () Wi = Dy, (uy D™ T"w = D™ T w0 = Wiy 1 .

Hence each D, (w) shifts the orthonormal basis {wm, »}mez for each Hilbert space
H.,, and so each D, (w) is a bilateral shift of multiplicity one acting on H,,. O

7. PROPERTIES OF W,,(z) AND H,(x)

Take an arbitrary vector (not necessarily a wavelet) x € H. We had already seen
that, for any integers k, m,n € Z,

D*Wp(2) = Winar(z) = D™ Wy(z) and  D¥M,(z) = Hn(z) = Ho(T™x)

(the second identity showing that each H,(x) reduces D) so that the actions of D
on W, (z) and H,,(x) are evident from the very definitions of these subspaces. We
had also seen — again, as an immediate consequence of the definitions of W,,(z)
and H,(x) — that, for any integers k,m,n € Z,

Win() = Wi (TFz)  and M, in(z) = Ha(TF2),
which show how these subspaces are affected (or not affected) by images of all

integral powers of T'. Applying Proposition 3 we now prove further relations in this
line. In particular, we consider the action of T' on W, (z) and H,(z).
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Proposition 5. For any vector x € H,

(a) TWhpn(z)= (T2 x) for every meZ,
(b) Wn(z) = T= Wy, (T*z)  for every m € Z,
() Hon(z) =Hi(D"x) for every n >0,

(d) H_n(2) = Hon(D**T*"tV2)  for every n > 0.

Win(T*?"x)  for every m € Z,
(b*) Wh(z) = T* 57 W,, (Tz) for every m € Z,
(c*) H_Qn(x) H_1(D™x) for every n >0,

(d*) Hnp(x) = Hogn (DT 12)  for every n > 0.

Proof. Take an arbitrary € H and consider the definitions of the subspaces W, (z)
and Hn(x) for each m,n € Z. According to Corollary 3 and Proposition 3(b,c),

T W, \/ TD"T "z = \/ D"T*" Tz = \/ D"T"T* "z = W, (T*"2),
Win(z) = \/ DPTT T w = \/ T DT T~ & = T3 W, (T" ),

which proves (a) and (b). By Propositrilon 3(b) we get the result in (c):
Hon (2 \/ DTz =\/D"D"T*x = \/ D"TD"z = Hy(D"x)
for every n > 0. Moreover, by Proposition 3(c) we get
Ha(z) = \/ D"T"z = \/ D"D"TT" 'z = \/ DT D"T" 'z
for every n € Z so ;nhat "

H_pn() :\/DmTﬁD*"T*’Hm =\/D"T' DT g = Hou (DT )

for every n > 0, thus proving (d). Dually, by Corollary 3 and Remark 4(b*,c*),
T Wp(z) = \/T*D"T"x = \/ DT " T"x =\ D"T"T"* "z = W (T** ),
Win(a) = \/ DT T"Tw =\ T*57 D™ T"Tx = T* 7 W,,,(T),

which proves (a*) and (b*). By Remark 4(b*) we get the result in (c*):
Hoon(z) = \/ DT ¥z =\/D"D"T"*z =\/ DT~ ' D"z = H_,(D"x)

m m m

for every n > 0. Moreover, By Remark 4(c*) we get

Hon(z) = \/ DT~z = \/ D"D"T*T~"+1z = \/ D"T"3 D"T~"+1g

for every n € Z so that

Hp(z) = \/DMT*rInD*“T”“m =\/ DT DT e = H_y (DT )

m m
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for every n > 0, thus proving (d*). O

Observe that the full action of T" on W,(z) is clear from Proposition 5(a,a*).
However, there is no counterpart of assertions (a) and (a*) for H,(x). That is, we
cannot express the action of 7' on H,(z) in terms of H s, (Fz) for some pair of
functions f and F'. Indeed, all we get from Corollary 3 and Proposition 3 is

THn(z)=\/TD"T"x = \/ D"T*" T"z = \/ D"T"T*"z.

m m

Remark 7. Consider the concrete example with operators D and T, on L?(R),
where Th,o = 1.0 for every n € Z and every o € R, as in Remark 5. Take any
function z € £L2(R) (not necessarily a wavelet). For each real number «, consider
the countable families of subspaces {Wi,.o(x)} and {Hna(z)} with

Wina(®) =\ D" Thax  and  Hpa(z) = \/ D" Thaz

for each m and n in Z so that, for every a € R and every k,m,n € Z,
D*Wi o) = Wimak).a(z) = D™ PEW, o (2),
D*Hopo(2) = Hpa(z) = Ho(Thaz),
Wina(®) = Wina(Trar) and  Hin)e(r) = Hua(Tkat)-

In this particular case the expressions of Proposition 5 are given as follows.

(a) TaWm.a(z) = W o(Tomaz) for every m € Z and every a € R,
b) Wma(z) =T 1 Wma(T-qx) for every m € Z and every a € R,

s &

¢) Hong(x) = Ho(D™x) for every n >0 and every a € R,
H

8. PROJECTION ON WAVELETS

Let M be a subspace of ‘H and let Pyq: H — H be the orthogonal projec-
tion onto M (i.e., the unique orthogonal projection Ppq of H into itself such that
ran Py = M). In particular, for any unit vector y in H (i.e., for any y € H with
llyll = 1), the projection on y is the orthogonal projection Py: H — H onto the
one-dimensional space spanned by y (i.e., the unique orthogonal projection P, of
H into itself such that ran P, = span {y}), which is given by

Pyx = (z;y)y for every z€H.

Theorem 2. Let D and T be operators on H satisfying Assumptions Ag and Ay,
and let w be a wavelet in H. Every x € H admits the following decompositions.
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(a) &= 5, Su(D" T Pu(D"T™)
= D" Pr.,D*Mz =3 DmPy, DMy,
b) ==, (D™T")Py(D"T™) ¢z =3 5 D™Pp.,D*"z,

n n

(C) T = En ZmTQm (DmeD*m)T*Z%x == En Zm TQm PD’"wT*;_TL"ﬂC,

Proof. Take an arbitrary x € H. Let w be a wavelet in H. Observe that D™T"w
is a unit vector for each m,n € Z and

Ppmpnywz = {(x; DT "w)D™ T w
{ D™(D*™ g ; T™w)T"w = D™ Ppn,D* ™z,

DmT™{((D™T")*z ;w)w = (D™T™) P, (D™T™)*x.

Recall that { D™T™w} is an orthonormal family (according to Assumption As) and
that Wo(w) = V,, T"w = @,, T"w and, for each m € Z, Wy, (w) = D™ Wy(w) =
D™\, Thw =\, D™"T"w = @, D™T™w. Thus

PWm(w)x = ZnPDmT"wx

S D™ Pra,D*"x,

S (DT Py (DT g = D™ Y, TP, T D*g = D™ Py () D™
Similarly, recall that Ho(w) = V/,, D™w = @,,, D™w and, for each n € Z, H,(w) =
Ho(T™w) = \/,, D"T™w = @, D™ T"™w. Thus

S D™ Ppa, D",
P’Hn(w)x = Z PDanwZ‘ = «
m > (D™T™) P, (D™T™) .

Since H = @,, Wm(w) = @,, Hn(w) (cf. Theorem 1), it follows that

Tr = Zmpwm(w)ﬁ = ZmZnPDanwIE

S S D" Proy D = ¥, DY, Ppay D"z,
Zm Zn(DmT")Pw(DmT")*x = Zm D”””Pwo(w)D*mgﬂ7

which yields the results in(a), and

n m DmPanD*mI,
2= Prore = 30,3, Powrmaz = | 202
n n m anmu)an)Pw(Dan)*m,

which yields the results in(b). Finally, recall from Proposition 3(c’) that D™T™ =
T35 D™ for every m,n € Z. Thus, replacing D™T"™ with T37 D™ in the last of
the above expressions, and recalling that D™ P, D*™ = Ppm,, for each m € Z (par-
ticular case of Ppmpn,, = (D™T™)P,(D™T")* for m,n € Z — set n = 0), we get

w=) > TF(D"P,D"™T"iwa =3 % T3 Ppn,T s,
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which yields the results in (c). |

These decompositions in (a), (b) and (c) are referred to as scales, time-shifts

and time-steps decompositions, respectively.
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