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MULTIRESOLUTION APPROXIMATION
SCALE AND TIME-SHIFT SUBSPACES

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. Multiresolution Approximation subspaces are £2(R)-subspaces de-
fined for each scale over all time shifts, i.e., “scale subspaces”, while with re-
spect to a given wavelet, the signal space £2 (R) not only admits orthogonal
scale subspaces basis, but orthogonal “time shift subspaces” basis as well. It
is therefore natural to expect both scale subspaces and time shift subspaces to
play a role in Wavelet Theory and, in particular, in Multiresolution Approxi-
mation as well. This is what will be discussed in the paper.

1. INTRODUCTION

Multiresolution Approximation (or Analysis) (MRA) [13, 14, 16] plays a key role
in Wavelet Theory. Heuristically speaking, a MRA is a family of nested £2(R)-
subspaces — called scaling approximation subspaces, or simply scaling subspaces
— with prescribed properties, defined for each scale over all time shifts. MRA
results in a method of constructing wavelets from scaling functions — generating
the MRA, as well as decomposition of £2(R)-signals into scaling component and
detail component.

It appears that time shift, for the most part, is “invisible” in Wavelet Theory.
This, perhaps is due to the fact that with respect to a wavelet, the signal space
L2(R) is usually represented by scale orthogonal subspaces basis (0.s.b.) consisting
of subspaces — defined for each scale over all time shifts. As a consequence any
signal is the sum — over all scales — of its “layers of detail”. However, the space
L?(R) can also be represented by time shift o.s.b. consisting of subspaces — defined
for each time shift over all scales [11]. Hence any signal is also the sum — over all
time shifts — of its layers of detail.

This paper is a sequel to Reference [12] in which we studied Time-Shifts Gen-
eralized MRA associated with a wavelet. Our goal here is to bring time shift to
MRA. We show that each scaling MRA subspace, besides being expressed in terms
of scaling function and its time shifts, as well as being represented by scale detail
subspaces defined in terms of wavelet functions, can also be expressed in terms of
time shift detail subspaces. This is obtained by means of £?(R)-time-shift o.s.b.
which is the key tool of the paper.

Section 2 briefly recalls scale and time shift subspaces constructed from wavelet
functions. These subspaces then serve as building blocks for representing Scaling
MRA subspaces and Associated Scale Detail MRA subspaces, to be discussed in
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Section 3. Section 4 introduces the concept of Time Shift Detail MRA subspaces,
while Section 5 discusses scale-time-shift approximation in £2(R). Section 6 closes
the paper with a formulation of the concept of Time Shift Multiresolution Approx-
imation.

2. SCALE AND TIME SHIFT DETAIL SUBSPACES

Let () € L2(R) be a wavelet [3, 15, 10] then the space L£?(R), by definition,
inherits the double-indexed orthonormal basis (0.1.b.) {¥mn ()} (m,n)ez2 consisting
of wavelet functions ¢, () defined in terms of the wavelet ¢(-) as

(2.1) V() = V2" $(27() = n),

(22) = Danw()a (m,n) € ZQ»
where
(2:3) Tf():=f(()=1) and Df():=v2f(2()),

are, respectively, time-shift-by-1 and dilation-by-2 bilateral shift operators of count-
ably infinite multiplicity [5, 17] on £2(R).

In the following m € Z always associates with scale 2™ and it is also referred to
as “level m” [9], while n € Z is responsible for time shift. Moreover, since

mn(t) = V2 (27 [t —n 5=]),  (m,n) € 22,

the wavelet function ¢, ,(-) is shifted in step of Qim — as n varies. Also, the closure
of the span (called closed spans) of a set A is denoted by \/ A (i.e., \/ A =5pan A)
and the orthogonal direct sum of a collection {M}} of orthogonal subspaces is
written as @, M.

Remark 1. A procedure involving closed spans and orthogonal direct sum which
will be used throughout is, as usual, closed span of orthogonal (closed) subspaces
of a Hilbert space (i.e., the topological sum of orthogonal (closed) subspaces) is
identified with their orthogonal sum — these are in fact unitarily equivalent (see
e.g., [6, p.37]). Also, subspaces spanned by wavelet functions are, by tradition,
characterized as “detail” subspaces [14, 15].

A wavelet functions o.n.b. {¥m 5 ()} (m,n)ez2 can be converted into a scale detail
orthogonal subspaces basis, denoted by {Wy, (%) }mez, and defined as closed spans
of Y n () over all n:

(24) Wm(d]) = Spﬁ{d’mn()a Vne Z}v

\/ D™p(() —n) = D"Wo(¥), mez,

n=-—oo

(2.5)

and is called “scale detail subspace (or layer) for scale m”. Moreover, since D has a
bounded inverse, D™ can be taken out of the closed span symbol (cf. [7, 11]), and
the subspace

(2:6) Wow) == \/ ¥(()—n),
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is a generating wandering subspace for the bilateral shift D [17], see also [7]; wan-
dering because

(2.7) D™Wo(1b) L D™ Wo(v),  whenever m # m/,

and generating since

(2.8) L(R) = P Wn(v) = €D D" W ().

meEZ MEZL

This decomposition is classic, not only in Wavelet Theory [4, 1], but in Hilbert
space bilateral shift theory as well, since such a decomposition actually defines
a bilateral shift whose multiplicity is the dimension of the generating wandering
subspace Wy(v) [17]. What is not classic, perhaps, is the fact that the space £2(R)
can also be represented by 0.s.b. {H,, } nez consisting of closed spans of 1, () over
all m [11],

(2.9) L*(R) = P Hn(¥),

nez
where
(2.10) Hp(¥) = Span {¢m,n(-) == D"T™P(-), Vm € Z},
(2.11) = \/ D™(()-n), nez,

called “the time shift detail subspace (or layer) for time shift n”.

The subspaces W,, (¢) are neither D-invariant nor D*-invariant, while the sub-
spaces H,(¢) are D-invariant and D*-invariant, which means that they are D-
reducing. Similarly, the subspaces H, (1)) are neither T i -invariant nor T;m—
invariant, while Wi, (1) are T_1_-invariant and T%—invariant [9]. These, in some

sense, show “opposite” characteristics of scale subspaces and time shift subspaces.
With respect to T’ i -Invariance and 7%, -invariance we also refer to [8] where these

3T

aspects are treated in detail.

We note that since H,(¢) is D-reducing, it can be represented as

(2.12) Ha(9) = @Da™ Wonl¥), nez,
mez

where D,, := D|H, (1)) — the part of D on H, (1)) — and

(2.13) Won(@) =\ ¥(()=n), nez

with the indices (0,n) indicating that Wy, (1) is for scale 2° and for time shift n.

It is plain that (2.13) is simply a “multiplicity-1” analog of the orthogonal de-
composition (2.9). It then follows that the D-reducing subspaces H, (1) should,
somehow, inherit some wavelet properties associated with the bilateral shift D.
These will become clear later.

3. SCALING MRA SCALE SUBSPACES AND SCALE DETAIL SUBSPACES

We now recall definition of (Discrete) MRA — with scaling function ¢(-) [13, 14, 16].
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Definition 1. A set of closed subspaces {V,,}mez, called scaling subspaces, is a
MRA — with scaling function ¢(-) — over £2(R) if the following properties are
satisfied:

(0) 3é(): Vo:=8D,czVo(()—n) and Viy1 = DV, (m,n) € Z2,
(1) Vm C Vm+1, m € Z,

(i) Nmez Vm = {0},
(

iii) Upez Vim = L2%(R).

Let {Vin}mez be a MRA with scaling function ¢(-) then [13]

(3.1) Vint1 = Vi ® Wy, (¢), m e Z.

We therefore have, on the one hand by definition,

(3.2) Vm = \/ D™¢((-) - n),

(3.3) =D™ \/ ¢(()-n) = D™y, mez,

and on the other hand by (3.1) and by MRA properties,

(3.4) Vi = Té; Wi (), m € Z.

m/=—o0

This shows that V), can also be represented by the subspaces W,/ (1) — for scales
not greater than 2™~1. We therefore denote the right hand side of (3.4) by V,, (%)

m—1
(3.5) Vo = P W (¥) = Vu(¥)), meL,

m/=—o00

and refer to V,, () as scale detail subspace “representing” V.

It is easy to see that V,,(¢), m € Z, also satisfy properties (i), (ii) and (iii) of
Definition 1, as well as property (0’) of Definition 2 below.

Definition 2. A MRA {V,,}mez — with scaling function ¢(-) — is now called
Scaling MRA, while the set of subspaces {V;,(¥)) } ez — representing {Vi, }mez —
satisfies Definition 1 with property (o) replaced by

(o) Vo) =@, Ww (@), and Vii1() = DVn(¥), (m,n) € Z2,

is called Associated Scale Detail MRA with wavelet v(-) derived from the scaling
function ¢(+).

Remark 2. In general, if a wavelet ¢(+) is not derived from a scaling function ¢(-),
and if a set {V,,(¢) }mez satisfies properties (i), (ii), and (iii) of Definition 1, and
if the “core subspace” Vy(1)) is T-invariant, then {V,,(¥)}nez is defined as a Gen-
eralized MRA [2].

We now connect a Scaling MRA {V,, } mez and its Associated Scale Detail MRA
{Vim(¥)} mez with the time shift subspaces {H,,(¢) }nez which yields the following
result.
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Lemma 1. Let () be a wavelet derived from scaling function ¢(-). Then the
Scaling MRA {Vim}mez and its Associated Scale Detail MRA { Vi (¥)}mez admit
the time shift detail decomposition

(3.6) Vi =Va(¥) = P HIV (@), mez,
n’€”Z
where
m—1
(3.7) K@) =\ D™w(()-n'), €L

Moreover, for each n € Z, the set {H%m)(d))}mez is a Scale Detail MRA over the
subspace Hn (V).

Proof. We have, from (3.5) and (2.6),

Vin(¥) = Té {7 D™ y((-) —n').
Therefore it is easy to see that
59 ) = NV D), mez,
. Wm0 M=o
(3.9) Vi (¥) = §7 H (), mez.

Moreover, since the subspaces H, (1) are pairwise orthogonal, and since (for each
m.n) M (W) C M),
(3.10) H™ (y) L HETI)(z/)), whenever n#n/, Y(m,m') € 7>

Hence (3.9) can be rewritten as
Vn(¥) = P H (@), mez,
n' €%

as claimed. The rest of the Lemma is self-evident. This finishes the proof. |

4. MRA TIME SHIFT DETAIL SUBSPACES

We now turn to MRA time shift detail subspaces. Let ¢(:) be the wavelet derived
from a scaling function ¢(-). Let the closed subspaces G, (¢), n € Z — called “detail
subspaces for time shifts not greater than n — 1”7 — be defined as

(4.1) Gn(¥) = 6_9 Huw (), neL.
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This is simply a time shift analog of the scale subspace V,,(1). Moreover, since
each H,/(¢) is D-reducing, hence so is G, (). We have

n—1 00
(4.2) Guw) = \/ \/ D™u(()-n),
[e%s) n—1
(43) -V Do),
This can be rewritten as
(4.4) Gn(v) = P Wi w), nez,
m/ €L

where WT(:,) () C Wi (v) is defined as

n—1

(4.5) W @)= \/ D"y(()—n').

n'=—o0

Moreover, since the subspaces Wy, (1), m € Z, are pairwise orthogonal, hence so are
w (), m' € Z. Tt is plain that the subspaces {G, ()} nez also satisfy properties

m/’

(i), (i) and (iii) of Definition 2.

We summarize the above in the next proposition.

Proposition 1. Let {Vm}mez be Scaling MRA with scaling function ¢(-) and
wavelet ¥(-). Then, besides the Associated Scale Detail MRA {Vin(¥)}mez, there
also exists the Associated Time-Shift Detail MRA {G, () }nez defined by (4.1) and
represented by the scale detail decomposition (4.4). Moreover, for each m € Z, the

set {W,(#)(l/))}nez is a Time Shift Detail MRA over the subspace Wi ().

We must note that, unlike V,,(v), the subspace G, (¢) does not represent V,,.
This is due to the fact that G, (¢) is D-reducing while V,, is only D*-invariant,
since V,,(¢) is. More can be said about the subspaces V,,(¢) and G, (¢). First,
Wi (1) can be rewritten as

(4.6) Win(¥) = WS () & Winn(¥),
where

(4.7) Wi () :=\/ D™¢(() —n).
Similarly, H,(¢) can be rewritten as

(4.8) Ha($) = HT () & Hom(¥),
where

(4.9) Hom(W) = \/ D™ 9(() —n).

‘We now show the next Lemma.
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Lemma 2. The subspace Vp,,(¢) admits the decomposition
m—1

(4.10) Vin(¥) = 6_9 W (y @ Wi n(

Similarly, the subspace G, (1)) ;:imz'ts the decomp(;’;tion

(4.11) On(¥) = @ HO (4) & GB Hor ()

Proof. Equation (4.10) follows readily from (3.5) and (4.6), while (4.11) is a conse-
quence of (4.1) and (4.8). O

To proceed we define

m—1 n—1
(4.12) V@) =\ \/ D™y(()—n'), (mn)eZ?

m/=—o0 n/=—o0

and

(4.13) Gnom (V) == \_/ \? Dmlz/)((~) —n'), (m,n)eZ

n'=—oco0 m/=—o0

Then, since D has a bounded inverse, it is plain that

(4.14) Vi (V) = Gnm(¥),  (m,n) € Z2.
Moreover,

m—1
(4.15) Vi) = V@) NGa(¥) = P WD (w),

by (4.10) and (4.4), and

(4.16) Onm(¥) = Gn(1) N EB o

n'=—o0

by (4.11) and (3.6). It then follows from Lemma 2, (4.15) and (4.16), that the
subspaces V,, (v) and G, (¢) now admit the decompositions

(4.17) Vin () = Vi (¥ @ Wi (¥
(4.18) = Gnm(¥) © @ HI (W),
and

(4.20) = Vin(¥) ® @ Wi ().
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Suppose now that the wavelet () is derived from a scaling function ¢(-). Then
1

(4.21) V() = \7 _ D™y ((-) —n'),
n—1
(4.22) = \/ D"¢((-) =) == Vmpn, (m,n)eZ?

In other words, the subspace V,, ,, is also represented by the subspace V,, »(v). We
conclude from the above, from (4.14) and Lemma 2, the next result.

Proposition 2. Let {Vm}mez be a Scaling MRA with scaling function ¢(-) and
wavelet (-). Then

(4.23) Vi = Vi (¥) = Gom(¥),  (m,n) € Z2.

5. TIME SHIFT APPROXIMATION

We now apply the above results to approximations over £?(R) — containing a
wavelet 1(+). It is plain from (2.8) that any f(-) € £L2(R) can be represented in
terms of detail over all levels m as

(5.1) FOY =" P, f(),

meZ

and from (2.9), in terms of detail over all time shifts n as

(5.2) FO =Y P fC),

neEZ
where P, denotes orthogonal projection onto the closed subspace M.

Suppose now that the wavelet ¢(-) is derived from a scaling function ¢(-) associat-
ed with the Scaling MRA {V,, };mez. Then it is plain from (2.8) and (3.5) that the
space £2(R) admits the “cascaded scaling-detail decomposition” for any level m:

(5.3) LR) =V & P Wr(¥), meL.
Therefore any f(-) € £L2(R) can now be represented as
(54) FO =P fO) + D0 P, f().

Now let m be any fixed level and p > m be another level. Then, by Definition 1(i),
Vi C V.

Therefore
V=V ®V, NV

From which and from (3.5) it is evident that

(5.5) Vi =V ® P War ().
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Suppose now that f(-) € V,. Then

p—1

(5.6) FO) = Pof() = Py f() + > Pw,, f()

This results in a Discrete Wavelet Transform (DWT) [9].
Now let us convert (5.5) into a time shift representation. We have

(5.7) = Vm @ \/ \/ D™ y(() —n').

Therefore
e} [’} p—1
(5.8) Vo =\ D"(()-n) e P \ Dw(()-n).

Thus, for any f(-) € V,,

(5.9  f() = Py, f() Z Py Z Z Pyt

n/=—oo n'=—oo0 m'=m

where Py is the orthogonal projection onto the vector ¢, n/(-) := D™ o(()—n'),
and Py, , , is the orthogonal projection onto the vector ¢/ (+) = Dm,w((-) —n').
In addition, if the support of f(-) is compact, or if f(-) is a sample over a finite
time window of a signal, then the infinite sums on the right hand side of (5.9) can
be reduced to finite sums — by allowing the index n’ to vary in a “suitable” finite
range [N', N] (say). This is expressed by the following equation:

N pn—1
(5.10) FOv<n<ny = Z Py, )+ Z Z Py, o I()

n/=N' n'=N"m’'=m
which can be regarded as a “finite time” DW'T.
To proceed, let us write (5.3) as

(5.11) L2R) = \/ D™o((- \/ \/ D™ n'),
(5.12) L2R) = \/ D™o(( \/ \/ D™y(() —n'),

which is a “cascaded scaling-detail time shift decomposition” for level m. This can
be further decomposed as

n—1 e} 00

(5.13) L2(R) = \/ D™o(()-n') & \/ D"o(()—n') & B Huwm(),

n’'=—oo n’=n n’=—oo

for each pair (m,n) € Z2. It is clear that the first term on the right hand side is
Vim.n by (4.22), while the second term is the orthogonal complement of V,,, ,, in V,,,,
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which is equal to that of V,, ,(¢) in V,,(¢) — since V,,,(¥) is equal to V,,, and
Vim.n is equal to Vp, (). Therefore (5.13) can be rewritten as

(5.14) L2R) = Vi ® PHIW) & P Hum@), mel,

n’'=n n/=—o0

where we have made used of (4.16) and (4.18). This can be rearranged to yield

n—1 e}
(5.15) L2R) = Vi @ P Hom(®) & D Hu(¥)
This allows us to represent any f(-) € L2(R) as
n—1 00
(516> f() = Z <f7 (bm,n (bm n’ Z PHn/ m ) + Z P’Hn/f()7

for each n € Z. Therefore, as in the case of (5.9), f(-) can be approximated over a
“suitable” time shift range [/, ] (say), for —co < v/ <v <n -1, as

v

(517) f(')(l/’fn/ﬁu) = Z <f7 ¢m,n ¢mn + Z P'H,L ,,L

n'=v’ n’'=v’

6. A FORMULATION OF TIME SHIFT MULTIRESOLUTION APPROXIMATION

We close the paper with a formulation of Time-Shift Multiresolution Approxima-
tion. We have shown that given a Scaling MRA {V,, } ez, with scaling function ¢(-)
and wavelet ¢(-), there exists the Associated Time-Shifting Detail MRA {G, }nez
defined by (4.1). Suppose now that, we are given a wavelet 1(-), then it is natural to
ask: “what Time Shift MRA — denoted by {7, }nez — which admits {G,, (¢) }nez,
constructed from the given wavelet (), as its Associated Time Shift Detail MRA?”
In other words, does there exist a function o(-) € £2(R) which generates the sub-
spaces 7,, — with suitable MRA properties — so that

(6.1) T, =Gn(¥), VneL?
First, since G, (¢) are D-reducing, hence so must be 7,,. Suppose now that ¢(-) in

L%(R) is a unit vector such that ¢((-) —n), n € Z, are wandering vectors for the
dyadic-scaling operator D, that is,
A(()=n) L D7p(() = n). ¥ (o) € 22
Then let 7,,, n € Z, be the closed D-reducing subspaces defined by
(6.2) T,.= \/ D"o(()-n), nez,
m' €.

and satisfy the properties:

() T C T, nez,

(i) Moes Ton = {0},

(i) Upen T = L2(R).
Moreover,

(6.3) T = T © Ho(¥), n el
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It then follows that, as in the case of V,,, the subspace 7, is represented by the
time shift detail subspace G, (v)

n—1
(6.4) T, = @ Hw@®) = Gu(¥), nel

n/=—oo

Thus the set {7, },ncz forms a Time-Shift MRA.
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