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WEYL’S THEOREM FOR DIRECT SUMS

B.P. DUGGAL AND C.S. KUBRUSLY

ABSTRACT. Let T and S be Hilbert space operators such that Weyl’s theorem
holds for both of them. In general, it does not follow that Weyl’s theorem
holds for the direct sum T @ S. We give asymmetric sufficient conditions on
T and S to ensure that the direct sum T @ S satisfies Weyl’s theorem. It is
assumed that just one of the direct summands satisfies Weyl’s theorem but is
not necessarily isoloid, while the other has no isolated point in its spectrum.

1. INTRODUCTION

By an operator we mean a bounded linear transformation of a Hilbert space into
itself. The Weyl spectrum of an operator T is the set 0,,(T) of all scalars A such
that A\ — T is not a Fredholm operator of index zero, which is a subset of the whole
spectrum o(T") of T. An operator T satisfies Weyl’s theorem (or Weyl’s theorem
holds for T') if the complement of ¢,,(T") in o(T") coincides with the set of all isolated
eigenvalues of T of finite multiplicity. Weyl’s theorem has been much investigated
over the past forty years. In this paper we focus on Weyl’s theorem for direct sums.
(Throughout this paper, all direct sums are orthogonal.) Tt is easy to give examples
(Sections 4 and 5) of operators T and S for which Weyl’s theorem holds for both of
them, while their direct sum 7" & S does not satisfy Weyl’s theorem. However, there
are classical cases where Weyl’s theorem is transferred from direct summands to the
direct sum. A particularly important case reports to hyponormal operators. It is
well known that normal and purely hyponormal operators satisfy Weyl’s theorem.
Moreover, every hyponormal operator is the direct sum of a normal operator and a
pure hyponormal operator. In this case, Weyl’s theorem for the direct summands
is transferred to the direct sum: Weyl’s theorem holds for large classes of operators
that include the hyponormal ones.

We show in Theorem 1 that, if 7" has no isolated point in its spectrum and S sat-
isfies Weyl’s theorem, then T @ S satisfies Weyl’s theorem whenever o,,(T @© S) =
o(T)Uo,(S). We also give sufficient conditions on T' or S to ensure that such
spectral identity holds. As a consequence, we show in Section 5 that if each finite-
dimensional eigenspace of T reduces T', then T satisfies Weyl’s theorem whenever
the restriction of it to the orthogonal complement of the span of those eigenspaces
has no isolated point in its spectrum and its adjoint has no eigenvalue of finite mul-
tiplicity. Direct sums involving hereditarily normaloid and compact operators are
also considered in Section 5.
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2. NOTATION AND TERMINOLOGY

Throughout the paper H and K will be nonzero complex Hilbert spaces. Let B[H)
be the unital Banach algebra of all operators on H (bounded linear transformations
of ‘H into itself). Take any 7' € B[H]. Put N(T) =T-1{0} and R(T') = T(H); the
kernel (or null space) and range of T, respectively. Recall the following elementary
properties (where T* stands for the adjoint of T and R(T)* for the orthogonal
complement of R(T)): N(T*) = Ho R(T)~ = R(T)* and R(T*) is closed if and
only if R(T') is closed. An operator in T' € B[H] is Fredholm if it has a closed range
and the kernels of both 7" and T™ are finite-dimensional. Let F denote the class of
all Fredholm operators on H:

F ={T € B[H]: R(T)is closed, dimN(T) < oo and dim N (T*) < oo}.

The Fredholm index of 7" in F is the integer ind (T') = dim N (T') — dim N (T*). A
Weyl operator is a Fredholm operator with null Fredholm index. Let VW denote the
class of all Weyl operators from B[H]:

W={TeF: ind(T) =0}.

Since T* and T lie in F together, it follows that ind (T*) = —ind (T), and so T € W
if and only if T* € W. The essential spectrum of T is the set of all A such that
Al — T is not Fredholm,

o(T)={NeC: (\[-T) ¢ F},

which coincides with the spectrum of the natural image of T in the Calkin algebra
B[H]/B.[H], the quotient algebra of B[H] modulo the ideal B, [H] of compact
operators. Note that 0.(T") = 04.(T) U 0,e(T), where o4.(T) and o,.(T) are the
left and right essential spectrum of 7', respectively, which are given by

00e(T) = {A € C: R(A —T)is not closed or dimN'(A —T) = oo},
ore(T) ={X € C: R(A —T) is not closed or dimN'(AX] —T*) = co}.
The Weyl spectrum of T is the set of all A for which Al — T is not Weyl,
ou(T)={AeC: A\ —T)¢ W)
Let o(T") denote the spectrum of T'. It is readily verified that o.(T") C 0,,(T) C o(T).
Now let 0o(T") be the complement of ¢,,(T") in o(T),
0o(T) = o(T)\ow(T) = {X€o(T): (\[-T)eW}
={Ae€o(T): (\[-T) € F and ind (A - T) = 0},
which is the set of all A € o(T') such that R(AI — T)) is closed and dim N (A — T') =
dim V(AT — T*) < oo. Thus (see e.g., [10, pp. 452, 454]),
oo(T) = {A€op(T): RAAI-T)" =R(M —T) #H and
dim N (A — T) = dimN'(X] — T*) < oo},
where op(T") denotes the point spectrum (i.e., the set of all eigenvalues) of T'. Let
0iso(T) denote the set of isolated points of ¢(T") and put
7T0(T) = Uiso(T) N Uo(T).
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This is the set of Riesz points of T' (some authors refer to it as the set of isolated
eigenvalues of T' of finite algebraic multiplicity). Now let opr(T") denote the set of
all eigenvalues of T' of finite multiplicity,

opr(T) ={X €op(T): dimN (A —T) < co}.

It is clear that o¢(T) C opp(T'). Finally, let moo(7") denote the set of all isolated
eigenvalues of T' of finite multiplicity,

m00(T) = 0iso(T) Nopp(T),

which is sometimes also referred to as the set of isolated eigenvalues of T of finite
geometric multiplicity.

Remark 1. Since 0o(T) C opp(T), it follows that mo(T) C moo(T). Actually,

mo(T) = {X € moo(T): R(A —T) is closed }
= mo0(T)\ow(T") = m00(T')\0e(T) = Oiso(T)\0w(T) = Tiso(T)\oe(T).
Indeed, if A € mo(T') C 0o(T), then A € moo(T) and R(AI — T') is closed. Now recall
that, if A € 0i0(T), then X € 0o(T) if and only if A & 04 (T) Nor(T) [4, p.366];

which ensures the converse: if R(AI — T) is closed and A € mpo(T"), then A\ ¢ g4 (T)
(for R(M — T) is closed and dim N (A] — T') < c0), and hence A € 7o(T"). Thus,

mo(T) = {A € moo(T): R(AM —T) is closed }.
Moreover, it is also readily verified that
m0(T) = Oiso(T)\0w(T) = Giso(T)\0e(T).
In fact, since 0(T) = o(T)\ow(T), it follows that
Tiso(T)\ow(T) = 0iso(T) N (O’(T)\O’w (T)) = Oiso(T) Noo(T) = mo(T).

But 0, (T)=0.(T) UG(T) where G(T) is a union of open subsets of o(T') [4, p. 367].
(Actually, G(T) is the part of the spectral picture of T' [14] consisting of the union
of all holes of the essential spectrum with nonzero indices.) Therefore,

Uiso(T)\Uw (T) = Uiso(T)\(Ue(T) U G(T)) = (Uiso(T>\Ue(T)) N (Uiso(T>\G(T))'

Since G(T) is a subset of o(T') that is open in C, it follows that 0is(T) N G(T) = @.
Hence 0is0(T)\G(T') = 0is0(T), and so

Oiso (T) \Uw (T) = Oiso (T) \Ue (T) .

Finally, since mo(T") C moo(T) C 0is0(T), m0(T) C o(T)\ow(T') and 0.(T) C 04,(T),
it follows by the above identities that

N

m00(T)\ow(T) C moo(T)\oe(T) C Tis0(T)\0e(T)
= Giao(TN\GW(T) = 70(T) = mo(T)\w(T) € moo(T)\w(T),
and hence
70(T") = moo(T)\ow (1) = moo(T)\oe(T).

Remark 2. Take any T € B[H]. The following assertions are pairwise equivalent.
(a) o(T)\ow(T) = 7oo(T).
(b) Uo(T) = ’/Too(T).
(©) a(T)\moo(T) = 0w (T).
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Indeed, since {0, (T),00(T)} forms a partition of the spectrum of T (i.e., o(T) =
0w (T)Uoo(T) and 0,(T) Noo(T) = @), it follows that (a) and (b) are equivalent,
(b) implies (¢) and, since mpo(T') C o(T), (c¢) implies (b) as well:

o0(T) = o(T)\ow(T) = o(T)\(o(T)\700(T)) = moo(T)-
Remark 3. Moreover, if any of the above equivalent assertions holds, then
7T0(T) = 7T00(T).

In fact, since all isolated points of o(T') in oo(T) lie in mo(T), it follows that, if
00(T) = moo(T), then moo(T") C mo(T); but mo(T") C meo(T') always. Therefore,

00(T) = meo(T) if and only if 0o(T) = mo(T) and 7o(T) = moo(T).

(This equivalence is commonly rephrased by saying that Weyl’s theorem holds for
T if and only if Browder’s theorem holds for T and mo(T) = moo(T').) Finally, note
that, according to Remark 1,

7T0(T> :7T()()(T) < TFQ()(T)ﬂUw(T) =g < TI'Q()(T)ﬂUe(T) = J.

3. WEYL’S THEOREM

It is usual to say that Weyl’s theorem holds for T (or T satisfies Weyl’s theorem)
if any of the equivalent assertions (a), (b) or (c) of Remark 2 holds (for further equiv-
alent conditions see [8], and recently [6]). It is easy to show that every operator T’
on a finite-dimensional space satisfies Weyl’s theorem with oo(T) = meo(T") = o(T)
(this extends to finite-rank but not to compact operators) and, on the other hand,
every operator T without eigenvalues (op(T) = @) also satisfies Weyl’s theorem
with 0o(T) = moo(T) = @. These are the trivial cases. Weyl proved in [18] that
Weyl’s theorem holds for self-adjoint operators, which was extended to normal
operators in [17], to hyponormal operators in [3], and to seminormal operators in
[1]. Recall that T € B[H] is hyponormal if T*T — TT* > O and cohyponormal if
T* is hyponormal, so that T is normal if it is both hyponormal and cohyponormal.
If T is either hyponormal or cohyponormal, then it is called seminormal. The next
result from [1] yields a generalization that extends many of the previous results
(also see [2]).

Lemma 1. [1] If finite-dimensional eigenspaces of a Hilbert space operator are
reducing and every direct summand of it is isoloid, then it satisfies Weyl’s theorem.

By a subspace we mean a closed linear manifold of H. A subspace M is invariant
for T if T(M) C M, and reducing if it is invariant for both 7" and T*. Also recall
that an operator is isoloid if every isolated point of its spectrum is an eigenvalue
(i.e., T is isoloid if 0150 (1) C op(T)).

A Hilbert space operator T is dominant if R(A —T) C R(M — T*) for every
A € C. This implies that N'(A\I — T') C N(XI — T*) for every A € C, which in turn
implies that N (Al —T') reduces T for each A € op(T). That is, every eigenspace
of a dominant operator is reducing and so is, in particular, every finite-dimensional
eigenspace of it. Therefore, a straightforward corollary of Lemma 1 says that if
RN —T) C RN —T*) and the restriction T|ap of T to each reducing subspace
M is such that oiso(T|m) C op(T|m), then T satisfies Weyl’s theorem. We restate
this consequence of Lemma 1 below.
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Lemma 2. If a Hilbert space operator is dominant and every direct summand of it
is isoloid, then it satisfies Weyl’s theorem.

An operator T' is normaloid if its spectral radius coincides with its norm (i.e.,
r(T) = ||T]|), and transaloid if A\] — T is normaloid for every A € C. Observe that a
direct summand of a transaloid operator need not be transaloid (in fact, it does not
need to be even normaloid). For instance, take T'= Q @ S, where @ is a quasinil-
potent nonzero contraction (i.e., 7(Q) =0 # ||Q|| <1 —eg., Q = ([1) 8) on C?)
and S is a transaloid contraction whose spectrum is the closed unit disc (e.g., S is
any unilateral shift, which is hyponormal, and so AI — S is hyponormal for every
A, thus normaloid, and hence S is transaloid). Since S is transaloid and r(S) = 1,

N[ — S| =r(M —8)=|\+r(S)=|N+1
(reason: o(AI —S) = A —0(S) and o(S) = D7, the closed unit disc), and therefore
M =T = [[(M = Q) & (M = 9)|| = M = S| = r(M = 5),
since || A — Q|| < ||AI — S]] because ||AT — Q| < |A| +|1Q]| < |A] + 1. Moreover,
oM -T)=A—oc(T)=A-0(Q)Ua(S)=A—0(S)=0(A] - 8)

and so r(AI —T) = r(AI — S), which implies 7(A] —T) = ||[A\] — T||. Thus the di-
rect sum T' = @ @ S is transaloid but the direct summand @ (a nonzero quasinilpo-
tent) is not even normaloid.

A part of an operator is a restriction of it to an invariant subspace. We say
that T is hereditarily transaloid (abbreviated HT) if every part of it is transaloid
(i.e., if the restriction T|aq of T to every invariant subspace M is transaloid), and
totally hereditarily transaloid (abbreviated THT) if it is hereditarily transaloid and
every invertible part of it has a transaloid inverse. Clearly, hereditarily transaloid
operators are transaloid, and hence normaloid. Actually, HT is a large class of
isoloid and normaloid operators that includes the hyponormal operators.

Proposition 1. Hyponormal ¢ THT C HT C Isoloid.

Proof. Recall that hyponormal operators are normaloid, A\ — T is hyponormal
whenever T is hyponormal for every scalar ), parts of a hyponormal operator
are again hyponormal, and the inverse of an invertible hyponormal operator also
is hyponormal (see e.g., [11, pp. 68,86,67,99]), so that hyponormal operators are
totally hereditarily transaloid, thus ensuring the first inclusion. To verify the third
inclusion we need the Riesz Decomposition Theorem, which says that if o(T) =
o1 Uog, where 01 and o9 are disjoint nonempty and closed sets, then T has a pair of
complementary nontrivial invariant subspaces { My, Ma} such that o(T|am,) = 01
and o(T|m,) = o2. Take an arbitrary A € 0is0(T") so that o(T") = {A\} U o for some
closed set o that does not contain A\. The Riesz Decomposition Theorem ensures
that T" has a nonzero invariant subspace M such that o(T|x) = {A}. Put H = T'|uq
on M # {0} so that o(A — H) = {0} (by the Spectral Mapping Theorem). If T is
hereditarily transaloid, then Al — H is a normaloid operator so that |\ — H|| =
r(AM — H) =0, and hence T|yy = H = AI in B[M], which implies A € op(T"). Thus
Uiso(T) Q O‘p(T). O

An operator is hereditarily normaloid (abbreviated HN) if every part of it is nor-
maloid, and totally hereditarily normaloid (abbreviated THN) if it is hereditarily
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normaloid and every invertible part of it has a normaloid inverse. These classes were
introduced in [5]. Clearly, totally hereditarily normaloid operators are hereditarily
normaloid, which in turn are normaloid. THN is another large class of isoloid and
normaloid operators that also includes the hyponormal operators. Recall that an
operator T is paranormal if | Tz||?> < || T?z||||x|| for every x in ‘H. The counterpart
of Proposition 1 to hereditarily normaloid operators reads as follows (also see [7]).

Proposition 2. Hyponormal C Paranormal C THN C Isoloid.

Proof. Recall that hyponormal operators are paranormal, which are normaloid.
Moreover, parts of a paranormal operator are again paranormal, and so is the
inverse of any invertible paranormal operator (see e.g., [11, pp.93,94,98,99]), so
that paranormal operators are totally hereditarily normaloid, thus ensuring the
first inclusions. To verify the last inclusion take an arbitrary A € ois0(T) so that
o(T) = {A\}Uo for some closed set o that does not contain A. Again, the Riesz
Decomposition Theorem ensures that 7" has a nonzero invariant subspace M such
that o(T|am) = {A}. If T is THN, then T|rq also is THN (in particular, 7| is
normaloid). If A =0, then T|y = O and A € op(T) trivially. If A # 0, then put
U= \"1T|p on M # {0}, which is again THN. Since o(U) = {1}, it follows that
U is unitary (reason: THN operators with spectrum in the unit circle are unitary [7,
Proposition 2]). Hence U — [ is quasinilpotent (i.e., o(U— I) = {0} by the Spectral
Mapping Theorem) and normaloid (in fact, normal) so that |U— I|| = r(U—1) = 0.
Thus T'|pm = AU = Al in B{M], and so A € op(T'). Therefore, 0iso(T") C op(T). O

Since every hyponormal operator is dominant, every part (and, in particular,
every direct summand) of a hyponormal operator is again hyponormal, and every
hyponormal operator is isoloid (according to Proposition 1 or Proposition 2), it
follows by Lemma 2 that every hyponormal operator satisfies Weyl’s theorem.

Remark 4. The above argument does not survive if hyponormal is replaced with
paranormal because paranormal operators (although still isoloid according to Prop-
osition 2) are not necessarily dominant. However, if T is totally hereditarily nor-
maloid, then both T and T* satisfy Weyl’s theorem [5, Lemma 2.5]. Thus, Weyl’s
theorem holds for paranormal operators and their adjoints and, in particular, Weyl’s
theorem holds for hyponormal operators and their adjoints, so that this also gives
another proof that every seminormal operator satisfies Weyl’s theorem. In fact,
since hereditarily transaloid operators are hereditarily normaloid, and totally hered-
itarily transaloid operators are totally hereditarily normaloid, it follows that if T
is totally hereditarily transaloid, then both T and T* satisfy Weyl’s theorem.

4. DIRECT SUM

If T € B[H] and S € B[K] satisfy Weyl’s theorem, it does not necessarily fol-
lows that the (orthogonal) direct sum 7' ® S € B[H @ K] satisfies Weyl’s theorem.
For instance, if S is a unilateral weighted shift on fi with a positive weight-
ing sequence that converges to zero, then o(S) = or(S) = {0} and R(S) is not
closed, where og(S) = op(S*)*\op(S) is the residual spectrum of S (e.g., see [10,
p.471]). Therefore, since op(S) = @, it follows that S satisfies Weyl’s theorem
(with 00(S) = meo(S) = @ — note that S is not isoloid). Now consider the di-
rect sum 0® S on C @ (2 so that o(0 ® S) = op(0 D S) = meo(0 ® S) = {0}. Since
R(S) is not closed in £%, it follows that R(0 & S) = {0} & R(S) is not closed in
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C @ 2, and hence 0 € 00(0 ® S). Thus, @ = 0o(0 ® S) # mo(0 ® S) = {0}, and so
0 & S does not satisfy Weyl’s theorem. Summing up: 0@ S is a compact operator
for which Weyl’s theorem does not hold, although Weyl’s theorem holds for both
of its (compact) direct summands.

We shall be concerned with the problem of giving conditions on the direct sum-
mands to ensure that Weyl’s theorem holds for the direct sum (e.g., see [12], [13]
and the references therein). It is readily verified that the Weyl spectrum of a direct
sum is included in the union of the Weyl spectra of the summands, that is,

ow(T®8) Coy(T)Uoyw(S)
for every T € B[H] and S € B[K], but equality does not hold in general [9]. A useful
sufficient condition, namely o,,(T") N 04, (S) has empty interior, was given in [13]:
ow(T® S) =0y (T)Uow(S) whenever (0,(T) ﬁaw(S))o =0.

This identity involving Weyl spectra plays a central role in establishing conditions
for the direct sum to satisfy Weyl’s theorem. The next result from [13] (also see
[12]) assumes, in addition, that Weyl’s theorem holds for both direct summands,
which in turn are supposed to be isoloid.

Lemma 3. [13] If both T € B[H] and S € B[K] are isoloid, satisfy Weyl’s theorem,
and 04,(T @ S) = 04, (T) U0y (S), then Weyl’s theorem holds for T @ S.

The above result considers symmetric assumptions on the direct summands T
and S: both T and S are isoloid and both satisfy Weyl’s theorem. In Theorem 1
(below) we consider asymmetric assumptions. In particular, we do not assume that
S is isoloid, as we do not assume that T satisfies Weyl’s theorem.

Theorem 1. Suppose T in B[H] has no isolated point in its spectrum and S in
B[K] satisfies Weyl’s theorem. If 0,(T & S) = o(T) U 0y(S), then Weyl’s theorem
holds for T ® S.

Proof. Recall: o(T @ S) = o(T) Uo(S) for any pair of operators. If Weyl’s theorem
holds for S, then o(S)\0w(S) = mo(S) and, if 0, (T ® S) = o(T") U 0, (S), then
o(T ® S)\ow(T @ 5) = ( (T)Ua(S)\(e(T) Uow(S))
= oS\ (o(T) Ul ))
= ( SN\ow($)\o(T) = mo0(S) N p(T),
where p(T') = C\o(T') is the resolvent set of T. On the other hand, observe that
Oiso(T'®S) is the set of isolated points of o(T'®S) = a(T) U o (S). If 0i50(T) = @ (so
that 0(T) = 0acc(T), where 0.0c(T) = 0(T)\0iso(T) is the set of all accumulation
points of ¢(T)), then
Uiso(T S¥ S) = (UiSO(T U 0150 ) [(UISO ﬂ Uacc(S)) U (Uacc(T) N O'iso(S)):I
= (Jiso(T \Jacc ) U (JISO \Jacc T))
= Oiso(S)\0(T) = 0150 (S5) N p(T').
Recall that op(T®S) = op(T) Uop(S) and dim N (T @ S) = dim N (T') + dim N (S)
for every pair of operators so that
opr(T @ S) = {X € opp(T) Uopp(S): dimN (A —T) + dimN(A] — S) < co}.
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Therefore,
moo(T @ 5) = 0150 (T © S) Nopr(T ® S) = 0iso(S) N p(T') Nopr(S) = moo(S) N p(T).

Thus
o(T @S \ow(T @ S) =meo(T ® S),

and hence T' @ S satisfies Weyl’s theorem. O

Here are two different instances where Theorem 1 can be applied to verify that
a direct sum satisfies Weyl’s theorem.

Example 1. Let S be a unilateral weighted shift on ¢7 with a positive weighting
sequence that converges to zero as in the first paragraph of this section. Let T' = S
be the canonical unilateral shift on Ef_ (which has no isolated point in its spectrum,
thus being trivially isoloid). Since S is not isoloid, Lemma 3 does not apply in this
case, even though S satisfies Weyl’s theorem. However, op(T & S) is empty (the
point spectra of both T' and S are empty) and so T @ S satisfies Weyl’s theorem.
This is confirmed by Theorem 1 since o(T @ S) = 0,(T & S) = o(T) U 0y, (S5).

Example 2. The above example exhibited a direct sum where both direct sum-
mands satisfy Weyl’s theorem but one of them is not isoloid. Now we consider a case
where both direct summands are isoloid but one of them does not satisfy Weyl’s
theorem. First note that if S, is the canonical unilateral shift on ¢ of multiplicity
one, then i (ST © 5, ) = @ but Weyl’s theorem does not hold for 7' = S% @ S5,
(although it does hold for both S} and S, , once S, is hyponormal). In fact, since
R(ST @S, ) =R(S%) & R(S,) is closed but not equal to (2 & £? (as each R(S%)
and R(S,) is closed in (2 and R(S}) # £2), since N'(S% & S,) and N (S, & S%)
are both one-dimensional (for V(S ) = {0} and dim N'(S%) = 1) and, finally, since
op(ST @®©S,) = op(S1) = D, it follows that 0 lies in 0o(S7 © S, ). This implies
that oo(T) # moo(T) = @, and hence T does not satisfy Weyl’s theorem. There-
fore, Lemma 3 does not apply in this case as well, regardless which operator S is. If
S =S, which satisfies Weyl’s theorem, then o.,(T' @© S) = o(T) U0 (S). Indeed,
take any A in op(T ® S) = op(S%) = or(S,) = D so that N (A — S, ) = {0} and
dim (M(AI — S7)) = 1, and hence dim N (A — (T & 5)) # dim N (A — (T & S)*)

reason: N (Al — (T & S)) = N(M — S3) & {0} & {0} is one-dimensional and,
on the other hand, N'(AI — (T @ 5)*) = {0} @ N(A] — S%) ® N(AI — S7) is two-
dimensional by the symmetry of the open unit disc . Then oo(T & S) = & so that
ow(T®S)=0(T®S)=0(T)Uo(S) =0(T)Uow(S) (since oo(S) = op(S,) is
empty). Moreover, recall that oi,(7T) = @. Thus T @ S satisfies Weyl’s theorem
by Theorem 1.

Examples 1 and 2 motivate an immediate consequence of Theorem 1. Suppose S
satisfies Weyl’s theorem. If 05, (S) Nopp(S) = @, then o(S) = 0,(5). If, in addi-
tion, 0, (T ®S) = o(T®S), then 0,(T & S) = o(T)U0,(S). Thus a straight-
forward application of Theorem 1 leads to the following corollary.

Corollary 1. Take T in B[H] with 0iso(T) =@. If S in B[K] satisfies Weyl’s theo-
rem, Oiso(S) Nopr(S) =2 and oo(T®S) =2, then T ® S satisfies Weyl’s theorem.
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5. APPLICATIONS

We begin with an auxiliary result on normal and compact direct summands that
will be applied often in the sequel.

Corollary 2. If T in B[H] is an isoloid operator that satisfies Weyl’s theorem,
then T © S satisfies Weyl’s theorem whenever S in B[K] is either (a) a normal
operator or (b) an isoloid compact operator that satisfies Weyl’s theorem.

Proof. Schechter Theorem ([15], [16] — also see [4, p.367]) says that

ow(S) =0.(5) U U or(S)
kezZ\{0}
for every operator S € B[K], where Z denotes the set of all integers and
or(S)={r€a(S): (M —S) € Fand ind (A —5) =k}
for each k € Z. Since 0, (S) No.(S) = @ for every k € Z, it follows that

U ox(S) =2 if and only if 0.(S) = 0y,(S).
kez\{0}
Moreover, it was shown in [9] that, for every T' € B[H],

0e(S) = 0w(S) implies 0y,(T®S) =0u,(T)Uaw(S).
If S is a normal, then V(A — S) = N(XI — S*) for every A € C and so 04(S) = @

for all k # 0. If S is compact, then again o4 (S) = @ for all k # 0 (by the Fredholm
alternative). Therefore, in both cases, 0.(S) = 0,,(5) so that

ow(T & 8) = 0u(T)Uoy(S)

whenever S is either normal or compact. Thus the stated result follows by Lemma
3 since every normal operator is isoloid and satisfies Weyl’s theorem. O

Recall that T satisfies Weyl’s theorem if and only if oo(T) = 0iso(T) N opr(T).
If 0i50(T) = &, then T satisfies Weyl’s theorem if and only if 09(T) = &. Thus
the assumption i50(7") = @ of Theorem 1 does not imply that T satisfies Weyl’s
theorem (for instance, i (S} ©S,) = @ but Weyl’s theorem does not hold for
S @ S, as wesaw in Example 2). However, if 0o(T") U 0is0 (1) = 9, then T satisfies
Weyl’s theorem. Indeed,

00(T)Uoiso(T) =@ if and only if
T € B[H] satisfies Weyl’s theorem and has no isolated point in its spectrum. (x)

Since 0¢(T) = @ if and only if 0,(T) = o(T) we get the following corollary of
Theorem 1 (where S is not assumed to be isoloid).

Corollary 3. Suppose T in B[H)] is such that oo(T) U 0iso(T) = @ and S in B[K]
satisfies Weyl’s theorem. If 0,(T ®S) = 04,(T)U 0w (S), then Weyl’s theorem
holds for T ® S.

Here is a first consequence of the above corollaries. It is well known that a pure
hyponormal operator H, (i.e., a hyponormal operator that has no normal direct
summand) is such that oiso(Hp) = op(H,) = @ (see e.g., [10, pp. 503, 508]). Since
op(H,) = @, it follows that o¢(H,) = @, and hence

Uo(Hp) U Uiso(Hp) = .
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Thus a pure hyponormal operator H, (which is trivially isoloid) satisfies Weyl’s
theorem with oo(Hp) = moo(Hp) = @ and 0, (Hp) = o(H),). Moreover,

Uw(Hp D N) = Uw(Hp) U Uw(N>

for every normal operator N (cf. proof of Corollary 2) so that either Corollary 2(a) or
Corollary 3 give still another proof that every hyponormal operator satisfies Weyl’s
theorem (as originally shown in [3]). Indeed, every normal operator N satisfies
Weyl’s theorem and every hyponormal operator H is of the form H = H, ® N,
where I, is a pure hyponormal and N is normal.

Remark 5. If T € B[H] is such that opp(T) = opp(T*) = &, then
ow(T®S)=0u,(T)Uaw(S) =0(T)Uay,(S)

for every S € B[K]. Indeed, take any T' € B[H] and consider the definition of o (T)
as in the proof of Corollary 2. It is easy to show that oy (T") C opp(T) U opp(T™)*
for all k € Z\{0} and oo(T) C opp(T) Nopp(T*)*. Since o(T') = 0, (T) U ao(T),

opr(T) = opp(T*) =@ implies 0.(T) = 0, (T) = o(T).

Therefore (cf. proof of Corollary 2), 0., (T & S) = 04, (T) U 0, (S) = o(T) U 04,(S)
for every S € B[K] whenever opp(T) = opp(T*) = @.

Remark 5 leads to the following further corollary of Theorem 1.

Corollary 4. Take any T € B[H] and put

M= \/ NA-T).

Xeopr(T)

Suppose each finite-dimensional eigenspace of T reduces T. If M is trivial, then T
satisfies Weyl’s theorem. If M is nontrivial and oiso(T| 1) = &, then T satisfies
Weyl’s theorem whenever either opp(T*|p1) = & or oo(T|pmr) = 9.

Proof. We shall split the proof into four parts.

(i) If M = {0}, then opp(T) = @ (the empty span is null). Therefore, if M = {0},
then 0o(T") = moo(T) = @ and so T satisfies Weyl’s theorem. Thus suppose
M #£ {0}

(ii) If N(AI —T) reduces T for each A € opp(T), then span,c,,,. N (M —T)
reduces T, and so does its closure M = \/, ., ) N(A —T). Then consider
the decomposition

Observe that T'|r satisfies Weyl’s theorem. Indeed, if N (A —T') reduces T
and u lies in N (A —T) for some A € opp(T), then T*u lies in N (A —T))
and so TT*u = AT*u = T*Tw. This implies that TT*v = T*Tv for every v
in span ¢, ()N (A — T), which in turn extends by continuity for every v
in M so that T|p(T|m)* = (T|m)*T| am because M reduces T'. Hence T'| amq
is normal, and therefore satisfies Weyl’s theorem.
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(iii) If M = H, then T' = T'|y satisfies Weyl’s theorem trivially. Thus suppose M
is nontrivial (i.e., {0} # M # H). Clearly, opp(T|p+) = @. Since M reduces
T we get T*|pr = (Tpqa)*. Thus, if opp(T*| 1) =, then 0, (T) =
0(T|pmr) Uow(T|m) according to Remark 5. Therefore, if oiso (T pqr) = &,
then Theorem 1 ensures that T satisfies Weyl’s theorem.

(iv) If 00(T| p2) = Oiso(T|pr) = &, then T'| o4 is isoloid and satisfies Weyl’s the-
orem according (), and so T satisfies Weyl’s theorem by Corollary 2(a). O

Corollary 3 leads to a version of Corollary 2(b), where the compact direct sum-
mand S is not necessarily isoloid.

Corollary 5. If T in B[H] satisfies Weyl’s theorem and has no isolated point in
its spectrum, then T @ S satisfies Weyl’s theorem for every compact S in B[K] that
satisfies Weyl’s theorem.

Proof. If S is compact, then 0, (T @ S) = 04,(T) U 04, (S) — cf. proof of Corollary
2. Thus, by Corollary 3 and the equivalence in (%), T'® S satisfies Weyl’s theorem
if both T and S satisfy Weyl’s theorem and o5, (T) = @. O

We close the paper with a version of Corollaries 2(b) and 5 for totally hereditarily
normaloid operators. Recall that this is a large class that includes the paranormal
(and so the hyponormal) operators (cf. Proposition 2),

Corollary 6. If T € B[H] is a totally hereditarily normaloid and S € BIK] is a
compact that satisfies Weyl’s theorem, then T @ S satisfies Weyl’s theorem when-
ever either (a) S is isoloid or (b) T is has no isolated point in its spectrum.

Proof. Every totally hereditarily normaloid operator is isoloid (Proposition 2) and
satisfies Weyl’s theorem [5, Lemma 2.5]. Thus Corollary 2(b) ensures part (a) and
Corollary 5 ensures part (b). O

Since T is isoloid, op(T") = @ implies the hypothesis in (b); that is, 0is(T) = @.

Example 3. Let T and S be unilateral weighted shifts on &QF. Suppose T has a
weighting sequence with all entries equal to 1, except the second entry which lies
in (0,1). This is a totally hereditarily normaloid operator [7] (thus an isoloid that
satisfies Weyl’s theorem) which is not hyponormal, not even paranormal (see e.g.,
[11, p.95]). Observe that o(T) = D~ and op(T) = @. Both identities ensure that
0iso(T) = @. Suppose S has a positive weighting sequence that converges to zero.
This is a compact operator that satisfies Weyl’s theorem but is not isoloid (Example
1). However, according to Corollary 6(b), T'® S satisfies Weyl’s theorem.
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