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TOTALLY HEREDITARILY NORMALOID OPERATORS AND
WEYL’S THEOREM FOR AN ELEMENTARY OPERATOR

B.P. DUGGAL AND C.S. KUBRUSLY

ABSTRACT. A Hilbert space operator T' € B(H) is hereditarily normaloid (no-
tation: T'€ HN) if every part of T is normaloid. An operator T'€ HN is to-
tally hereditarily normaloid (notation: T' € THN) if every invertible part of T
is normaloid. We prove that T'H N-operators with Bishop’s property (3), also
T H N-contractions with a compact defect operator such that 7—1(0) C7*~1(0)
and non-zero isolated eigenvalues of T are normal, are not supercyclic. Take
A and B in THN and let dap denote either of the elementary operators
in B(B(H)): Aap and d4p, where Ayp(X) = AXB— X and d4p(X) =
AX — XB. We prove that if non-zero isolated eigenvalues of A and B are
normal and B—1(0) C B*~1(0) then dp is an isoloid operator such that the
quasinilpotent part Ho(dap — A) of dap — A equals (dap — A\)~1(0) for ev-
ery complex number A which is isolated in o(dap). If, additionally, d4p has
the single-valued extension property at all points not in the Weyl spectrum of
daB, then d4p, and the conjugate operator d? 5, satisfy Weyl’s theorem.

1. INTRODUCTION

A Banach space operator T' € B(X) is hereditarily normaloid, denoted T' € HN,
if every part of T (i.e., the restriction of T to an invariant subspace) is normaloid;
T € HN is said to be totally hereditarily normaloid, denoted T' € THN, if every
invertible part of T is normaloid. (Recall that T is normaloid if ||T]| equals the
spectral radius r(T') of T.) The class of THN operators is large. For example,
Hilbert space operators T' which are either hyponormal or p-hyponormal (0 < p < 1)
or w-hyponormal or such that |T|?<|T?| are TH N-operators. (See [13], [18] for
definitions and properties of these classes of operators.) Again, paranormal (Banach
space) operators are T H N-operators [16, page 229]. T H N-operators share many,
but by no means all, of the properties of hyponormal operators. Thus the isolated
points of the spectrum of a THN operator are simple poles of the resolvent of the
operator, eigenspaces corresponding to distinct non-zero eigenvalues of the operator
are mutually orthogonal, and the operator satisfies Weyl’s theorem (see[8]). THN
operators are closed under multiplication by a non-zero scalar. Structure of THN-
contractions, in particular those with a compact or Hilbert-Schmidt defect operator,
has been studied in [9]. This paper continues the study of T'H N-operators. It is
proved that T'H N-operators with Bishop’s property (3), also T'H N-contractions
with a compact defect operator such that 7-1(0) € 7%~ *(0) and non-zero isolated
eigenvalues of T are normal, can not be supercyclic. Of interest to us here are
the elementary operators Aap € B(B(H)), Aap(X) = AXB — X, and dsp €
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B(B(H)), 04ap(X) = AX — XB, where H is a Hilbert space and A, B are THN-
operators in B(H) such that their non-zero eigenvalues are normal. Letting dap
denote either of these elementary operators, it is proved that if B=1(0) € B*~'(0)
then d4p is an isoloid operator such that Ho(dap — A) = (dap — A)71(0) for
every complex number A which is isolated in o(d4p), where Ho(dap — \) denotes
the quasi-nilpotent part of dap — A. If, additionally, d4p has the single-valued
extension property at all points not in the Weyl spectrum of d 45, then it is proved
that d4p, and the conjugate operator d* 5, satisfy Weyl’s theorem.

In the following, X will denote a Banach space and H will denote an infinite
dimensional complex Hilbert space. B(X') will denote the algebra of operators on
X, C the set of complex numbers, D the open unit disc in C, D the boundary
of D and D the closure of D. For an operator T € B(X), we shall denote the
spectrum, the point spectrum, the approximate point spectrum and the isolated
points of the spectrum by o(T"), 6,(T), 0o(T) and oiso(T'), respectively. The range
of T' will be denoted by T'(X). Recall that T" is Fredholm if T'(X) is closed and both
the deficiency indices a(T) = dim(7~1(0)) and B(T) = dim(X /T (X)) are finite,
and then the (Fredholm) index of T', ind (T'), is defined by ind (T') = o(T) — 5(T).
T is semi-Fredholm if either T'(X) is closed and a(T) < oo or B(T) < oo. A
contraction T' € B(H) is of class Cy. if the sequence {||T™z||} converges to zero for
every x € H, and of class C1. if the sequence {||T™z||} does not converge to zero for
every nonzero x € H. It is of class C g or of class C'; if its adjoint T is of class Cy.
or (', respectively. All combinations are possible, leading to classes Cyg, Co1, Cio
and C17. Recall that a contraction T' € B(H ) is said to be completely non-unitary,
shortened to cnu, if there exists no non-trivial reducing subspace M of T" such that
the restriction T'|ps of T to M is unitary. (See [21] for further information on these
classes of contractions.) The rest of our notation (and terminology) will be defined
progressively, on an if and when required basis.

2. SUPERCYCLIC OPERATORS

A Banach space operator T € B(X) has (Bishop’s) property (3) if, for every
open subset U of C and every sequence of analytic functions f,: U — X with the
property that

(T =N fn(A) =0 as n— oo

uniformly on all compact subsets of U, it follows that f,,(A\) — 0 as n — oo locally
uniformly on U [19, Definition 1.2.5]. M-hyponormal operators, p-hyponormal
operators and k-quasihyponormal operators satisfy property (8) (see [6],[17] and
[19]).

An operator T' € B(H) is said to be supercyclic if, for some x € H, the homoge-
neous orbit

{M"z: A€ C and n=0,1,2,...}

is dense in H. Hyponormal operators on a Hilbert space of dimension greater than
one are not supercyclic [19].

Recall that a Hilbert space operator T' € B(H) is a contraction if and only if
I —T*T is a nonnegative contraction. In this case, the nonnegative contraction
Dy = (I —T*T)% is called the defect operator of T.
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Theorem 2.1. If T is a contraction in THN such that either (i) T satisfies prop-
erty (8) or (ii) Dy is compact, T~ (0) € T*~'(0) and non-zero isolated eigenvalues
of T are normal, then T is not supercyclic.

Proof. Suppose, to the contrary, that T is supercyclic. Then T € Cpy. is a cnu
contraction [4, Theorem 2.2].

(i) If T satisfies property (3), then the normaloid property of T' € THN implies
that o(T) C 0D [19, Proposition 3.3.18]. Since THN contractions with spectrum in
the unit circle are unitary [9, Proposition 2(a)], T' is unitary. This is a contradiction.

(i) The hypothesis Dt is compact implies that D2 = I — T*T is compact, and
hence that T*T = I — D% is Fredholm. In particular, the range T*(H) of T* is
closed and «(T) = a(T*T) < oo. Hence T(H) is closed and a(T) < o0, i.e., T is
(upper) semi-Fredholm. As a Cp -contraction, T" has a triangulation

- T01 *
T_|: 0 T’()Q:l7

where Tpy € Cp; and Tpg € Coo [21, p.75]. The hypothesis D is compact implies
To1 is a Cpi-contraction with a compact defect operator, which (since T-1(0) C
T*~1(0)) implies by [9, Proposition 9] that Ty; acts on the trivial space {0}. Hence
T is a Cpp-contraction with a compact defect operator. We prove that ind (7") = 0.
Recall from [15, Proposition 3.1] (see also [4, Theorem 3.2]) that if T € B(H) is
supercyclic, then o,(T*) consists at most of the singleton set {A} for some A #
0. Thus 0 is not in the point spectrum of both T and 7™, which implies that
ind (T') = 0. Combining this with the fact that T is semi-Fredholm, it follows that
o(T)ND = ¢,(T)ND consists of just one point A for some A # 0. By hypothesis, A
is a normal eigenvalue of T'; hence 7' is the direct sum of AI|(p_x)-1(0) and a THN
operator T3 such that o(T7) C 0D. Since THN operators with spectrum in the
unit circle are unitary [9, Proposition 2(a)], T acts on the trivial space {0}. But
then T'= A\I, and hence not supercyclic. This completes the proof. O

Evidently, THN operators are closed under multiplication by a non-zero scalar.
Hence, Theorem 2.1(i) applies to hyponormal and w-hyponormal. (Observe that
the argument of the proof of Theorem 2.1 applies to M-hyponormal and quasi-
hyponormal operators.) A canonical example of a contraction satisfying Theorem
2.1(ii) is that of the wunilateral shift U. Theorem 2.1(ii) however has wider ap-
plications. Observe from the proof of Theorem 2.1(ii) that if T is a contraction
with a C¢ completely non-unitary part, Dy is Hilbert-Schmidt and non-zero iso-
lated eigenvalues of T" are normal, then T is not supercyclic. Paranormal operators
(i.e., operators T' € B(H) such that ||Tz|? < || T2z for unit vectors z € H) are
T H N operators such that their non-zero isolated eigenvalues are normal [25]. Since
paranormal contractions have a C o completely non-unitary part [10], paranormal
contractions with Hilbert-Schmidt defect operator are not supercyclic.

3. ELEMENTARY OPERATORS Aap AND dap

An operator T' € B(X) has the single-valued extension property at A\g € C, SVEP
at A9 € C for short, if for every open disc D,, centered at Ay the only analytic
function f: Dy, — X which satisfies

(T=Nf(A\)=0 forall \eDy,
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is the function f = 0. Trivially, every operator 7" has SVEP at points of the
resolvent C \ o(T'); also T has SVEP at A\ € 0i50(T). We say that T has SVEP if
it has SVEP at every A € C. The quasinilpotent part Ho(T — X) and the analytic
core K(T — X) of (T — ) are defined by

Ho(T = N) = {a € X+ lim_ (T~ A)"al|* =0},
and nee

K(T — \) = {x € X: there exists a sequence {z,} C X and J >0 for which
=20, (T — N)ZTpt1 =z, and ||z, < 6"||z|| for all n=1,2,...}.

We note that Ho(T — A) and K(T — \) are (generally) non-closed hyperinvariant
subspaces of (T — \) such that (T'— A\)7P(0) C Ho(T — A) for all p=0,1,2,... and
(T —XN)K(T —)\) = K(T — \) (cf. [20], [1]).

In the following, we assume that A, B in B(H) are THN operators such that
the non-zero isolated eigenvalues of A and B are normal. An important example
of such operators A and B is that of hyponormal operators: isolated points of
the spectrum of a hyponormal operator are normal eigenvalues of the operator.
More generally, the non-zero isolated points of the spectrum of a (Hilbert space)
paranormal operator are normal eigenvalues of the operator [25]. Note that this fails
for plain THN operators [9, Remark 4]. Define the elementary operator Aap €
B(B(H)) and the generalised derivation a5 € B(B(H)) by

Aap(X)=AXB—X and 645(X)=AX — XB.

Recall that an isoloid operator is one for which isolated points of the spectrum are
eigenvalues of the operator. Our first observation is that A 4 retains this property
for all A € gis0o(Aap) such that A # —1. The following lemma is crucial to our
proof of this observation.

Lemma 3.1. THN operators are isoloid.
Proof. See [9, Proposition 3(a)]. O

Theorem 3.2. Ho(Aag — ) = (Aag — X)71(0) for all (=1 #)\ € 0i50(Nap). In
particular, A 4 p is isoloid.

Proof. We start by noticing that if A is an isolated point in 0(Aap), then B(H) =
HO(AAB - /\) (&) K(AAB — /\), hence if HO(AAB - )\) = (AAB - )\)_1(0) then
(Aap —AN)(B(H)) = (&ap —ANK(Aap —A) = K(Aap — N),
which implies
B(H) = Ho(Mag — \) ® (Aap — M\)(B(H))

so that A is a simple pole of the resolvent of A4p [16, Proposition 50.2]. Thus to
prove the theorem it would suffice to prove that Ho(Aap — A) = (Aap — X)71(0)
for all (—1 #)A € 0i50(Aap). Furthermore, since TH N-operators are closed under
multiplication by a non-zero scalar, —<A € THN for all A # —1. Hence it would

» THX
suffice to prove that if 0 € ois0(Aap), then Hy(Aap) = A;‘}B(O).

Recall from [12] that o(Aap) = {af —1: a € 0(A), B € o(B)}. If 0 lies in
Oiso (A AB), then there exist finite sets {a1, as, ..., a, } and {81, B2, ..., Bn } of distinct
scalars «; € 0(A) and §; € o(B) such that a;8; = 1 for all 1 < i < n. Obviously,
a; and §; are non-zero (for all 1 < ¢ < n), the points «; are isolated in o(A) and
the points 3; are isolated in o(B).
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Since the non-zero isolated points of A and B are normal eigenvalues (by Lemma
3.1 and our hypothesis on the isolated eigenvalues of A and B), the subspace H; =
Vi (A — a;)71(0) reduces A and the subspace H| = \/;_,(B — 3;)~1(0) reduces
B. Let

A=A|H1 ®A|H9H1 =A ®Ay; and B = B|H1 ®B|H6H{ = B, ® Bs.

The operators A; and B; (have finite spectrum and) are normal, and 0 & 0(A 4, 5,)
for all 1 < 4,5 < 2 such that ¢,j # 1. Let X € Hy(Aap), X: H & (HS H}) —
H, ® (H © Hy), have the matrix representation X = [Xij]?,j:r Then

G(X) = [A%, 5, (Xi))lE =1
Since 0 ¢ o(Ay,p,) for all 1 <4,5 <2 such that i,j # 1,
. 1 . _ n 1
Jim (X7 < lim [[AG N [HIAG, 5, (X)) = 0.

Hence X;; = 0 for all 1 < 4,7 < 2 such that 4,5 # 1. Since the operators A; and
By are normal, and By (also, Ay) is invertible,

lim ||8" w =0,

_1(
n—oo lBl

which implies that 5A131‘1(X11) =0 [23, Lemma 2]. Thus A4, g, (X11) = 0, which
implies that Ho(Aap) = A 5(0). O

1 — n
X))l < IBUHIIAY, 5, (X11)

The operator Aap — A reduces to the operator ®(X) = AXB in the case in
which A = —1. Since o(®) = {af: a € 0(A),5 € 0(B)}, —1 € 0iso(AuB) <=
0 € 0iso(P), so that if —1 € 0i50(Aap) then either 0 € 0iso(A) or 0 € 0iso(B).
The example of the operators A = I and B = P & Q, where P is an invertible
T H N-operator and @ is a k-nilpotent operator (for some integer k > 1) on a finite
dimensional Hilbert space, shows that the analogue of Theorem 3.2 may fail for the
0 Xz } is in Ho(®) but not
0 Xo2
in ®71(0).) If, however, 0 is a normal eigenvalue of B, then one has the following.
(Here we do not require the hypothesis that the isolated non-zero eigenvalues of A
and B are normal.)

case in which A = —1. (In this example every X = {

Theorem 3.3. If 0 € 01, (®) and B~'(0) € B*~1(0), then Ho(®) = &~1(0).

Proof. We divide the proof into the cases (i) 0 € 0iso(A) and 0 ¢ oi50(B); (ii)
0 ¢ 0is0(A) and 0 € 0550(B), and (iii) 0 € 0is0(A) and 0 € 0450(B). Note that
if 0 ¢ 0iso(A), then 0 ¢ o(A). (Reason: if 0 € o(A), then exists a sequence
{p;} € o(A) such that p; converges to 0, and then for a v € o(B) the sequence ;7
converges to 0 in o(®).) A similar statement holds for B. Let X € Hy(®).

(i) If 0 € 0is0(A), then (A being THN, 0 is a simple pole, and hence an eigenvalue
0 Az

}, where Ay is invertible.
0 Asz

of A [8]) A has a matrix representation A = [

Letting X = [X;;]7;_;, it then follows that

AP X — A ALy Xoy A AL X ] '

Afy X1 ABy X2
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Since |A"X|| < || B~Y||"[|®™(X)]|, it follows that lim,_ o [|[A%Xa||* = 0 for i =

1,2. This, since Ass is invertible, implies that

lim [ X317 < [| A% | lim || A5, X, o

=0,
which implies Xo; = 0 for all i = 1,2. But then X € ®~!(0). Hence Hy(®) =
®=1(0).

(ii) The hypothesis B~*(0) € B*~'(0) implies that if 0 € ¢,(B), then 0 is a
normal eigenvalue of B. Consequently, if 0 € 050 (B), then (the operator B being
THN, 0 is a normal eigenvalue of B and) B = 0 @ By, where Bgy is invertible.

Letting X = [X;;]2,_,. it then follows that XB" = | © 772 | Since | XB"|| <
0 X22Bj),
A=Y @™ (X)]|, it follows that
lim [|Xil* < ||By'| lim | XiBL|* = 0.
n—00 n—o00
Thus X;2 =0, i=1,2, and X € ®~1(0), which implies that Ho(®) = ®~1(0).

(iii) Arguing as in the cases above, it is seen in this case that ®"(X) has a
0 A12AY; ' X22BE,
0 A5y X2 By}

X € Ho(®), then X9y = 0, so that X € ®~1(0) and Ho(®) = ®~(0). O

representation ®"(X) = }, where Aoy and By are invertible. If

The next theorem is an analogue of Theorem 3.2 for generalized derivations d 4.

Theorem 3.4. Ho(5ap — A) = (5ap — A)71(0) for all non-zero X € 0i50(d4B)-
Furthermore, if B~1(0) C B*fl(O) and 0 € 0iso(daR), then Ho(dap) = 52}3(0).

Proof. Let (0 #)A € 0i50(0ap). If we consider (64 — \)(X) = AX — X(B + )
as the operator d4(p1a), then 0(0ap —A) = {a = (B+N): a € a(4d), B+ €
og(B+A\)}. Since X € 0i50(d4p) if and only if 0 € 0is6(04(B+2)), there exist finite sets
{a1,a9,...;an}t and {B1+ A, B2+ A, ..., Bn + A} such that «a; € 0i50(4), Bi € Tiso(B)
and a; = fB; + A for all 1 < i < n. We have three possible cases: (i) 0 € ois0(A)
and 0 ¢ 0is0(B + A); (ii) 0 € 0is0(A) and 0 € oi50(B + A); (iii) 0 € 0is0(A) and
0 € 0i50(B + A). We consider these cases separately. Let X € Ho(0ap — A).

(i) If 0 ¢ 0is0(B + A), then B+ X is invertible and 6 4(p4x)(X) = A gpyr)—1 (X
(B+A). Since (|67 ) (X S IB+A"AG poay-1 (X)) and AT 55— (X)]
(B + X))~ ||5A(B+)\)( )|, it follows from Theorem 3.2 that Ho(dAB —-A) =
Ho(Dagray-1) = (Daeay-1)710). Again, as X € (Agpgry-1) ' (0) if and
only if {AX — X(B + M}B + A)~! = 0if and only if X € (a5 — A)~1(0),
HO((;AB — )\) = (5,43 — )\)71(0).

(ii) If 0 € 0i50(B + A), then (0 #) — A € 0i50(B), which implies that B has a

_,\0111 (])3 } and B + X\ = 0@ (Bag + \). Here the operator
22

Bss + A is invertible. Since (5AB — )\) (X) = AAA71(B+)\) (X),
1A () O < NATH™M(8a = 1™ (X)]]

)
| <

representation B = [

and
[(6aB = N)" (X)) < A" A% -1 (50 (X,
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Ho(0ap — A) = Ho(Aa-1(B4+r))- If we now let X have the representation X =

[Xij]zz,j:D then

Xt o= [ O a1

0 Xoa(Bax+ M)
and )
Jim [ Xio(B2z +2)"[* =0

for all i = 1,2. Hence (argue as before) Ho(5ap — ) = (5ap — A)~1(0).

(iii) If O € 0is0(A) and 0 € 0450(B+A), then A has a representation A = [ 0 A ]

0 Az
and B has a representation B = 0@ (Baa+ ) (see case (ii)), where Ags and Bag + A
are invertible. Letting X = [X;;]7 ;_;, it follows that
AlgAn71X21 * :|
dag — N (X) = W22 "
(6an )" (X) A X1 5A22(322+>\)(X22)

(where, if Xo; = Xo9 = 0, then the entry “x” equals X15(Bgs + A\)™.) Since
lim || Xo1 || % < [| A3 || lim [ A5 Xor[[% = 0
n—oo n—oo
and
. 1 _ 1y 1 " 1
Jim || Xoo||7 = IAZ ) 1(Baz + A) 1||7111_)120|\5A22(322+/\)(X22)||n —0,
it follows that X9 = X99 = 0. But then (from the entry “x” in the matrix above)
dim [ Xio|F < [[(Baz + )7 lim [ Xio(Bao + 2" % =0
implies that X15 = 0. Thus X € (§45—\)"1(0) and Ho(dap—A) = (645 —2)"1(0).

To complete the proof we note that if B=1(0) € B*~*(0), then 0 € 0is0(B) is a
normal eigenvalue of B, and the argument of cases (ii) and (iii) holds with A = 0
(case (i) is not effected by A =0). O

Let dap € B(B(H)) denote either of the operators A 45 and §45. If B~1(0) C
B*71(0), then Theorems 3.2, 3.3 and 3.4 imply that Ho(dap —\) = (dap —\)~*(0)
at every A € giso(dap). Observe that the hypotheses A, B € THN and B~'(0) C
B*~'(0) may be replaced by the hypotheses that A, B* € THN and B*~*(0) C
B~1(0) in Theorems 3.2, 3.3 and 3.4. (This requires but obvious minor changes
in the proofs of these theorems.) Examples of operators A, B* € B(H) such that
A,B* € THN and B*~'(0) € B~'(0) abound, the example of hyponormal A and
B* being one such example (see [7]). Summarizing, we have:

Theorem 3.5. If A,B € THN (or A, B* € THN), and B~'(0) € B*~'(0) (resp.,
B*~1(0) € B71(0)), then Ho(dap — A) = (dap — A)~'(0) at every \ € oiso(daB).

Recall from [11, p.95] that a subspace M of the Banach space X is orthogonal to
a subspace N of X, denoted M L N, if ||m]| < ||m+n]| for all m € M and n € N.
(This asymmetric definition of orthogonality coincides with the usual definition of
orthogonality in the case in which X = H is a Hilbert space.) Theorem 3.5 implies
that if A,B € THN and B~'(0) C B*~'(0) or A,B* € THN and B*~'(0) C
B~1(0), then (dap — A\)7(0) L (dap — A\)(B(H)) for every A € giso(daB).

The numerical range of T' € B(X) is the set

W(B(X),T) ={f(T): feBX)" |fl=fU)=1},



8 B.P. DUGGAL AND C.S. KUBRUSLY

where B(X)* denotes the dual space of B(X) [5]. W(B(X)),T) is a compact
convex subset of C. A Banach space operator T' € B(X) is said to be semi-regular
if T'(X) is closed and T71(0) C T°°(X) =(),;», IT™(X). The operator T' admits a
generalized Kato decomposition, or GKD, if there exists a pair of T-invariant closed
subspaces (M, N) such that X = M & N, where T'|p; is quasi-nilpotent and T'|y
is semi-regular; T is said to be of Kato type if T has GKD and T is nilpotent
[3]. Obviously, the operator d4p — A, where d 4p is the operator of Theorem 3.5, is
Kato type at every A € gis0(dap). Let ox(T) denote the part of o(T') defined by

oe(T) ={A € C: M —T is not of Kato type}.

Then oy (T') is a closed subset of o(T) such that every non-isolated point of the
boundary of o(T) belongs to ok (T). If both T" and T* have SVEP at a point
A € Oace(T), then A € 0y, (T). This follows from Theorems 2.6 and 2.9 of [2], as
the following argument shows. Assume that T'— X is Kato type. Then, since both
T and T* have SVEP at A, both asc(T" — \) and dsc(T — X) are finite, and hence
equal. Consequently, there exists an integer ¢ > 1 such that B(X) = (T — \)~4(0)®
(T — N)?(B(X)), which implies that )\ is isolated in o(T’), a contradiction. (See also
[3].) Clearly, ot(T) C 0¢(T), where o;(T) denotes the Fredholm spectrum of T.
(See e.g., [1].) We remark here that the following theorem does not require the
hypothesis that the isolated non-zero eigenvalues of A and B are normal.

Theorem 3.6. For each A € o(Aap) such that |1 + A| = ||A]|||B||, either A is a
simple pole of the resolvent of A4p or a point of of(Aap).

Proof. 1f we let 1+ A = exp® |1 + A|, and define the operators A; and By by A; =
exp(—i@)ﬁ and By = H_gl\’ then Ay, B; are contractions in THN. Since (Aap —
MN(X) = (1+M){A4,p,(X)} and since A € 6(Aap),0 € 0(Da,p,) ={af—-1:ac
0(A1),B € o(B1)}. Let Ly, € B(B(H)) denote the operator of left multiplication
by A, and let Rp, € B(B(H)) denote the operator of right multiplication by Bs.
Then W(B(B(H)),La,Rp,) = {z € C: |z| < 1}, and W(B(B(H)), Aa,B,) =
{z € C:]1+2 <1}. Thus 0 € OW(B(B(H)),Aa,B,), where 9(S) denotes
the boundary of the set S C C. Hence 0 € 0o(Aa,B,) C 0a(Aa,B,). We have
two possibilities: either 0 € 0is0(Aa,B,) Or 0 € Tacc(Da,B,). If 0 € 0350(Da, B, ),
then there exist finite sets {a1, as,...,a,} and {B1, B2, ..., Bn} such a; € gis0( A1),
Bi € 0iso(B1) and «;8; = 1 (so that |a;| = |B;] = 1) for all 1 < i < n. Since Ay
and By € THN are contractions, «; and §; are normal eigenvalues (of A; and By,
respectively). It follows that, see the proof of Theorem 3.2, 0 is a simple pole of the
resolvent of A4, p,, which implies that B(H) = A;‘}Bl (0)® A4, B, (B(H)). Notice
that ALl (0) = (Aap — A)7(0) and A, g, (B(H)) = (Aap — A)(B(H)). Hence
A is a simple pole of the resolvent of Agp. Assume now that 0 € oacc(Da,B,)-
Then 0 € 0,,..(Aa,B,). The point 0 being a boundary point of o(Aa,p,), 0 €
oke(DayB,) € 0p(Aa,B,). (Both Aa, p, and the conjugate operator A% p have
SVEP at 0.) Recall from the Nirschl-Schneider theorem [5] that a Banach space
operator has ascent less than or equal to one at all points in the boundary of
the numerical range of the operator. Hence asc(A4,5,) < 1, which implies that
ind (A4, B,) < 0 [16, Proposition 38.5]. Thus 0 € o¢(Aa,B,) implies that either
A4, B, (B(H)) is not closed or (A4, p,) = co. But then either (Aap — A)(B(H))
is not closed or B(Aap — A) = oc0. Hence A € op(Aap). O
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4. WEYL’S THEOREM FOR dap

For an operator T' € B(X), let moo(T) = {\ € 0i0(T): 0 < (T — X) < o0}
denote the set of isolated eigenvalues of T' of finite geometric multiplicity, and let
mo(T) = {X € o(T): asc(T — A) = dsc(T — ) < oo} denote the set of Riesz points
of T. Then mo(T") C moo(T). Recall that T is said to be Weyl if it is Fredholm of 0
index, and that the Weyl spectrum o,,(T") of T' is the set {\ € C: T—\ is not Weyl}.
T satisfies Browder’s theorem (Weyl’s theorem) if o(T) \ 0 (T) = mo(T') (resp.,
o(T)\ 0uw(T) = moo(T)) [14]. If T has SVEP, then T satisfies Browder’s theorem
[2, Corollary 2.17]. SVEP, however, is not sufficient to guarantee Weyl’s theorem;
consider for example the operator T = T} @© Ty, where Ty € B({3) is defined by
Ty(x1,22,...) = (B, %, ...) and Ty is a nilpotent on a finite dimensional space, when
it is seen that o(T) = 0, (T) = {0}, mo(T) = 0 and 7ee(T) = {0}. The following
theorem shows that the elementary operator d4p satisfies Weyl’s theorem under a
weaker SVEP condition.

Theorem 4.1. Let A and B be THN operators, If B~=1(0) € B*~'(0) and dap
has SVEP at all points A € o(dap) \ ow(dap), then dap and d¥ g satisfy Weyl’s
theorem.

Proof. f X\ € moo(dap), then A € 0i50(dap) and a(dap — ) < oo, which implies
that A is a simple pole of the resolvent of d4p (such that a(dap — A) < o). Hence
dap — A is Fredholm of 0 index (apply [16, Proposition 38.6]), which implies that
moo(dap) C o(dap)\ow(dap). Thus, to prove that d4p satisfies Weyl’s theorem it
will suffice to prove that moo(dap) 2 0(dap)\ow(dap). Let A € o(dap)\ow(dan).
Then dyag — A is Fredholm of 0 index. Since d4g has SVEP at ), it follows from
[2, Corollary 2.10] that asc(dap — A) = dsc(dap — A) < co. Hence A € moo(dag).
We prove next that d* p satisfies Weyl’s theorem.

Since dap satisfies Weyl’s theorem, both dap and d 5 satisfy Browder’s the-
orem. (Recall from [14] that a Banach space operator T satisfies Weyl’s theorem
= T satisfies Browder’s theorem <= T™* satisfies Browder’s theorem.) Hence

o(d4p) \ ow(dip) = mo(dip) C moo(dip)-
For the reverse inclusion, we let A € moo(d% ). Then A € 0i0(dap) and the
following implications hold:

A€ Uiso(dAB) - B(H) = (dAB — /\)_1(0) ® (dAB - )\)(B(H))
= B(H)" = (dip — \")7(0) & (diyp — M) (B(H)")
= asc(dig — M\[") =dsc(diyg — AI[") < 1.
Since 0 < a(d¥ g—AI*) < o0, it follows that a(d% 5 —AI*) = B(dl g — M[*) < 00 =
X € o(dhg) \ ow(dyp). Hence mo(dyp) = moo(dYyp), and d¥p satisfies Weyl’s
theorem. [

Theorem 4.1 has an A, B* € THN counterpart. More precisely one has:

Theorem 4.2. Let A, B* € THN. If B*~'(0) € B~'(0) and dap has SVEP at
all points A € o(dap) \ ow(dap), then dap and d% g satisfy Weyl’s theorem.

The hypotheses B*~'(0) € B~1(0) and d4p has SVEP at all points A € o(dap)\
ow(dap) are satisfied by many a choice of ALB* € THN. Thus, for example, if
A, B* are hyponormal operators, then (B* —X)~1(0) C (B —\)~%(0) and dap — A
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has SVEP for all complex A (see [7, Corollary 2.4]). A stronger version of Theorem
4.1 holds for operators d4p with SVEP.

We say that the Fredholm operator T' € B(X) has stable indez if ind (T — )
ind (T — p) > 0 for every A, p in the Fredholm region of T'. Let m,0(T) = {\ € C:
A€ 04 (T) and 0 < a(T — \) < o0o}. We say that a-Weyl’s theorem holds for T if

owa(T) = 04(T) \ mao(T),

where 0,,,(T) denotes the essential approximate point spectrum (i.e., 0u(T) =
(oo(T+K): K € K(X)} with K(X) denoting the ideal of compact operators on
X). If welet ®.(X) = {T € B(X): a(T) < oo and T(X) is closed} denote
the semi-group of upper semi-Fredholm operators in B(X), then 0,,(T) is the
complement in C of all those A for which (T'— A) € ®,(X) and ind (T — A) < 0.
The concept of a-Weyl’s theorem was introduced by Rakocvié: a-Weyl’s theorem
for T = Weyl’s theorem for T, but the converse is generally false [22].

Let H(o(T)) denote the set of analytic functions f which are defined on an open
neighborhood U of o(T).

Theorem 4.3. Let A and B be THN operators such that B~1(0) € B*~'(0). If
dap has SVEP, then:

(i) f(dap) and f(d% ) satisfy Weyl’s theorem for every f € H(o(dag)).
(ii) dap satisfies a-Weyl’s theorem.

Proof. (i) Recall from Schmoeger [24, Theorem 1] that if an isoloid Banach space
operator satisfying Weyl’s theorem has stable index, then f(T') satisfies Weyl’s
theorem for every f € H(o(T)). As we have already seen, the operators dap
and d7 p are isoloid and satisfy Weyl’s theorem. Furthermore, if d4p has SVEP
at A and dap — A is Fredholm, then asc(dap — A) = dsc(dap — A) < oo and
ind(dap — A) = 0 (combine [2, Theorem 2.6] with [16, Proposition 38.6]). Hence
ind(dap — A) =ind (d% 5 — A[*) = 0, so that d4p and d% 5 have stable index.

(ii) If dap has SVEP, then o(dag) = oa(dhp) [19, page 35|, mao(dar) =
moo(dY g) and owe(dap) = 0w(d¥ 5). Since d¥ p satisfies Weyl’s theorem, the proof
follows. [
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