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WEYL’S THEOREMS FOR POSINORMAL OPERATORS

B.P. DUGGAL AND CARLOS KUBRUSLY

ABSTRACT. An operator T belonging to the algebra B(H) of bounded linear
transformations on a Hilbert H into itself is said to be posinormal if there exists
a positive operator P € B(H) such that TT* = T*PT. A posinormal opera-
tor T is said to be conditionally totally posinormal (resp., totally posinormal),
shortened to T' € CTP (resp., T € T'P), if to each complex number X there cor-
responds a positive operator Py such that [(T—\I)*|? = \P;\m (T—XI)|? (resp.,
if there exists a positive operator P such that |(T—\I)*|? = |P1/2(T—\I)|? for
all A). This paper proves Weyl’s theorem type results for TP and CT P opera-
tors. If A € TP, if B* € CTP is isoloid and if dyp € B(B(H)) denotes either
of the elementary operators ap(X) = AX —XB and Aap(X)=AXB-X,
then it is proved that d 4 p satisfies Weyl’s theorem and d% 5 satisfies a-Weyl’s
theorem.

1. INTRODUCTION

Denoting the algebra of operators (equivalently, bounded linear transformations)
on an infinite dimensional complex Hilbert space H into itself by B(H), an oper-
ator T' € B(H) is said to be posinormal (short for positive-normal) if there exists
a P > 0in B(H) such that TT* = T*PT. Equivalently, T' € B(H) is posinor-
mal if there exists a co-isometry V* € B(H) and a positive operator P € B(H)
such that T' = T*PV*. The class of posinormal operators is large: it contains
in particular the classes consisting of hyponormal (T € B(H) : TT* <T*T), M-
hyponormal (T € B(H) : |(T — X )*|?> < M|(T — XI)|? for some real number M > 0
and all complex numbers \) and dominant operators (T € B(H) : |(T — \)*|?> <
My |(T — M\I)|? for some real number My, > 0 and all complex numbers )\). The
class of posinormal operators was introduced by Rhaly [22], and has since by con-
sidered by Jeon et al [14]. Tt is elementary to see that the restriction of a posinormal
operator to an invariant subspace is again posinormal.

It is immediate from the definition of posinormality that a posinormal opera-
tor T satisfies T=1(0) € T7*~1(0), which implies that a posinormal operator has
ascent < 1. A posinormal operator T is said to be conditionally totally posi-
normal (resp., totally posinormal), shortened to T € CTP (resp., T € TP), if
to each complex number A\ there corresponds a positive operator Py such that
(T — NI)*|> = |Py*(T — \)|? (resp., if there exists a positive operator P such that
(T — XI)*|? = |P/2(T — \)|? for all \). CTP operators have been considered by
Jeon et.al. [14] (where they have been called totally posinormal). Obviously, if
T € CTP, then (T — A\I) has ascent < 1. Furthermore, T' € CTP if and only if T
is dominant [22, Proposition 3.5]. Restricting themselves to only those T' € CTP
for which the spectrum o((T' — A\I)|m) = {0} = (T — AI)|pm = O for every
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M € Lat(T), Jeon et al [14, Theorem 13] have shown that T satisfies Weyl’s the-
orem. In this note we prove that posinormal operators satisfy Weyl’s theorems
under conditions which are visibly weaker than those considered in [14]. The plan
of this note is as follows: we explain our notation and terminology in Section 2,
with Section 3 devoted to proving our main results. In addition to proving Weyl’s
theorem type results for TP and CTP operators, we prove that if A € TP, if
B* € CTP is isoloid and if dap € B(B(H)) denotes either of the elementary oper-
ators §4p(X) = AX — XB and A p(X) = AXB — X, then dsp satisfies Weyl’s
theorem and dY 5 satisfies a-Weyl’s theorem.

2. NOTATION AND TERMINOLOGY

A Banach space operator T, T € B(X), is said to be Fredholm, T € ®(X), if
T(X) is closed and both the deficiency indices o(T) = dim(T~1(0)) and B(T) =
dim (X /T(X)) are finite, and then the index of T, ind(T), is defined to be ind(T) =
a(T) — B(T). The ascent of T, asc(T), is the least non-negative integer n such
that 7-"(0) = T~ ("*1(0) and the descent of T, dsc(T), is the least non-negative
integer n such that T"((X)) = T"T((X)). We shall, henceforth, shorten (7" — \I)
to (T — A). The operator T is Weyl if it is Fredholm of index zero, and T is said
to be Browder if it is Fredholm “of finite ascent and descent”. Let C denote the
set of complex numbers. The (Fredholm) essential spectrum o.(T"), the Browder
spectrum o(7") and the Weyl spectrum o,,(T") of T of are the sets

0.(T)={Ae€ C: T — X\ isnot Fredholm};
op(T)={Ae C: T—X isnot Browder}
and
ow(T)={AeC: T—X isnot Weyl}.
If we let p(T') denote the resolvent set of the operator T, o(T") denote the usual
spectrum of T and acc o(T) denote the set of accumulation points of o(T), then:
0e(T) Coy(T) Cop(T) Co(T)Uace o(T).
Let mo(T") denote the set of Riesz points of T (i.e., the set of A € C such that
T — X is Fredholm of finite ascent and descent), and let mpo(7) denote the set
of eigenvalues of T of finite geometric multiplicity. Also, let 7m4o(T") be the set of
A € C such that ) is an isolated point of 0, (7)) and 0 < dim ker(T'—\) < oo, where
04(T) denotes the approximate point spectrum of the operator T' € B(X). Clearly,
m0(T) C moo(T) C 7ao(T'). We say that Browder’s theorem holds for T € B(X) if
o(T) \ ow(T) = m0o(T),
Weyl’s theorem holds for T if
o(T)\ ow(T) = moo(T),
and a-Weyl’s theorem holds for T if

Uwa(T) = Ua(T) \ 7raO(T)v
where 0,,(T) denote the essential approzimate point spectrum (i.e., owe(T) =
(oo(T+K): K € K(X)} with K(X) denoting the ideal of compact operators on
X). If welet (X)) ={T € B(X): a(T) < oo and T(X) is closed} denote the

semi-group of upper semi-Fredholm operators in B(X), then 0,,(T) is the comple-
ment in C of all those A for which (T'— ) € ®,(X) and ind(T — A) < 0. The
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concept of a-Weyl’s theorem was introduced by Rakocvié: a-Weyl’s theorem for
T — Weyl’s theorem for T, but the converse is generally false [21].

An operator T' € B(X) has the single-valued extension property at Ag € C, SVEP
at Ao € C for short, if for every open disc D), centered at Ao the only analytic
function f : D), — X which satisfies

(T—=XN)f(A)=0 forall \eDy,

is the function f = 0. Trivially, every operator 7" has SVEP at points of the
resolvent C\ o(T'); also T has SVEP at A € isoo(T). We say that T has SVEP
if it has SVEP at every A € C. It is known that a Banach space operator T" with
SVEP satisfies Browder’s theorem [1, Corollary 2.12] and that Browder’s theorem
holds for T' <= Browder’s theorem holds for T* [12].

The analytic core K(T — X) of (T — A) is defined by

K(T —\) = {z € X: there exists a sequence {x,} C X and ¢ >0 for which
x =20, (T — N)Zpt1 =z, and ||z,|| < 6™||z|| for all n=1,2,...}.

We note that Ho(T — A) and K(T — \) are (generally) non-closed hyperinvariant
subspaces of (T — \) such that (T'— A\)"P(0) C Ho(T — A) for all p=0,1,2,... and
(T — NK(T — \) = K(T — \) [18].

The operator T' € B(X) is said to be semi-regular if T(X) is closed and T~1(0) C
T*(X) = Npen IT™(X); T admits a generalized Kato decomposition, GKD for
short, if there exists a pair of T-invariant closed subspaces (M, N) such that X =
M & N, the restriction T'| 5 is quasinilpotent and T'|y is semi-regular. An operator
T € B(X) has a GKD at every A € isoo(T), namely X = Ho(T — \) @ K(T — ).
We say that T is of Kato type at a point A if (T — X)|ps is nilpotent in the GKD
for (' — A). Fredholm operators are Kato type [15, Theorem 4], and operators
T € B(X) satisfying property H(p),

H(p) Ho(T = XA) = (T = A)7"(0)

for some integer p > 1, are Kato type at isolated points of ¢(T") (but not ev-
ery Kato type operator T satisfies property H(p)). Let ox(T) = {\ € C:
T — X is not Kato type}. The set o4(T) is known to be a closed subset of C
such that o4(T) C 04(T) [3].

3. MAIN RESULTS

We say in the following that an operator T' € B(H) is conditionally totally
posinormal, C'T' P for short, if to each A\ € C there corresponds an operator Py > 0
such that |(T — \)*|*> < |Py/*(T — \)|?; T will be said to be totally posinormal, TP
for short, if T'is CTP and the positive operator Py can be chosen independent of
A. It is easy to see that T is CTP if and only if it is dominant, and that T is TP
if and only if it is M -hyponormal. Clearly, TP operator satisfy Bishop’s condition
(3) [11] and hence are subscalar. If we let T' denote the generalized scalar extension
of T to some Hilbert space K D H, then there exists an integer p > 1 such that
Ho(T —X\) = (T'— X\)~?(0) for each A € C [5, Theorem 4.5, Chapter4]. The Hilbert
space H being invariant for 7', Ho(T|; —\) = Ho(T = \)NH = (T —\)"?(0)NH =
(T — A)~P(0), ie., T satisfies the property H(p) for all A € C. Finally, since
asc(T — \) < 1, T satisfies property H(1).
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Let H(o(T)) (resp., Hi(c(T))) denote the set of analytic functions which are
defined on an open neighbourhood U of o(T) (resp., the set of f € H(o(T')) which
are non-constant on each of the connected components of the open neighbourhood
U of o(T) on which f is defined). Recall that an operator T is said to be isoloid if
each X\ € isoo(T) is an eigen-value of T'.

Theorem 3.1. Let T € TP. Then:

(i) f(T) and f(T*) satisfy Weyl’s theorem for every f € H(o(T)).

(il) T satisfies a-Weyl’s theorem.

(iii) If T has SVEP, then T satisfies a-Weyl’s theorem.

(iv) If T is the quasi-affine transform of an operator S € B(H), then f(S) and
f(S8*) satisfy Weyl’s theorem for every f € H(o(T)).

Proof. The proof of (i) follows from [19, Corollary 3.6 | (see also [2]). We note that
if T is the quasi-affine transform of S and T satisfies property H(p), then S satisfies
property H(p) [19, Lemma 3.2], and this implies (iv) [19, Corollary 3.7]. To prove
(ii), we notice that T satisfies property H(1) = T has finite ascent (and hence
SVEP), which implies that o(T*) = 0,(T™) [17, pp. 35] and 7,0(T*) = mo(T™). We
prove that 0, (T*) = 0, (T*): since T* satisfies Weyl’s theorem by (i), this would
then imply that 04 (T™)\0we(T™) = Tao(T™). It being clear that 0y, (T*) C 0., (T%),
we prove the reverse inclusion. Since

A 0yo(T*) <= (T =N € P, (H) and ind(T — \)* <0,
the hypothesis 7" has SVEP implies that
dsc(T — A)* < oo ([1, Theorem 2.9]), (T — A\)* < oo and ind(T — \)* < 0.
Since dsc(T — N\)* < oo = ind(T — A\)* > 0 [13, Proposition 38.5], it follows that
dse(T =N <o0,a(T =N =p(T -\ <oo= X ¢ 0,(T").

This leaves us with the proof of (iii).

The hypothesis T* has SVEP implies o(T) = 0,(T) [17, pp. 35], and hence
Ta0(T) = moo(T). We prove that 0y,q(T") = 04,(T): since T satisfies Weyl’s theorem
(by part (7)), this would then imply that 04 (T) \ 0we(T) = mao(T). It being clear
that A ¢ 0, (T) = A & 0we(T), we prove that A ¢ 0,4 (T) = X ¢ 0, (T). Since
A ¢ 0ye(T) = (T—)) € 4(X) and ind(T — ) < 0, the hypothesis 7* has SVEP
implies that dsc(T — \) < oo [1, Theorem 2.9], a(T — \) < oo and ind(T — X) < 0.
Again, since dsc(T — \) < oo implies ind(T — A) > 0 [13, Proposition 38.5], we get:

A oye(T) = dse(T—)X) <oo and a(T —X) =8(T — ) < o0,
which implies that A ¢ o, (T). |

The example of a quasi-nilpotent CT'P operator shows that C'PT operators do
not satisfy property H(p). (Such operators exist: see [14, Example 8].) Since
(T —X\)~1(0) C (T — \)*~(0) for CTP operators T, CTP operators have ascent <
1. In particular, C'T' P operators have SVEP.

Lemma 3.2. A necessary and sufficient condition for the isolated points of the
spectrum of a Banach space operator T, T € B(X), to be poles of the resolvent of
T is that isoo(T) N ok (T) = 0.



WEYL’S THEOREMS FOR POSINORMAL OPERATORS 5

Proof. If isoo(T)No(T) = 0, then A € isoo(T) = T— )\ is Kato type. Since both
(T'—X) and (T'— A\)* have SVEP at 0, it follows (from [1, Theorems 2.6 and 2.9] and
[17, Proposition 4.10.6]) that asc(T — ) = dsc(T — ) < co = X is a pole of the
resolvent of T [13, Proposition 50.2]. Conversely, if each A € isoo(T) is a pole (of
some finite order p) of the resolvent of T, then X = (T'—\)"?(0) & (T — M\)P(X) =
A ¢ 0 (X) = isoo(T) N o (T) = 0. O

Theorem 3.3. If T € CTP is such that isoo(T) Nog(T) =0, then:
(i) f(T) satisfies Weyl’s theorem for every f € H(o(T)) and T* satisfies a-
Weyl’s theorem.
If also T* has SVEP, then:
(ii) f(T) satisfies a-Weyl’s theorem for every f € Hi(o(T)).

Proof. (1) We start by proving that T satisfies Weyl’s theorem. Since T' € CTP =
(T—X\)"1(0) C (T = \)*"(0), ase(T—A) < 1 forall A € C = T has SVEP = T
satisfies Browder’s theorem = o(T) \ 04,(T) = 7o(T) C moo(T'). For the reverse
inclusion, let A € moo(T). Then, since isoo(T) N ok (T) = 0, A € mo(T) (by
Lemma 3.2) = o(T") \ 0(T). Thus o(T) \ 0 (T) = moo(T), and T satisfies Weyl’s
theorem. It is clear from Lemma 3.2 that T is isoloid = o(f(T)) \ moo(f(T)) =
f(o(T) \ moo(f(T))) [16, Lemma]. Since T has SVEP, o, (f(T)) = f(0w(T)) for
every f € H(o(T)) [6, Corollary 2.6]. We already know that T satisfies Weyl’s
theorem. Hence

o(f(T)) \ moo(f(T)) = flow(T)) = ow(f(T)),
i.e., f(T) satisfies Weyl’s theorem.

The proof that T* satisfies a-Weyl’s theorem is similar to that of Theorem 3.1(ii),
and is left to the reader.

(ii) Let f € H1(o(T)). Then T* has SVEP = f(T™*) = f(T)* has SVEP [17,
Theorem 3.3.9] = o(f(T)) = 0o(f(T)) [17, pp. 35]. Arguing as before it is seen
that o, (f(T)) = owa(f(T)). Since f(T) satisfies Weyl’s theorem by part (i),

).
Ta(f(T)\ 0wa(f(T)) = o(f(T)\ 0w (f(T)) = moo(f(T)) = m0a(f(T)),
i.e. f(T) satisfies a-Weyl’s theorem. a

We remark here that Theorem 3.3 has a more general Banach space version; see
[9]. A CTP operator T such that o(T — \) = {0} = T = A satisfies isoo(T) N
ort(T) = 0: this is seen as follows. If A € isoo(T), then H = Ho(T — \) & K(T —
A). The operator (T' — A)|g,(r—x) being CTP with o((T" — A)|g,(r—x)) = {0},
(T = Ml ao(r—r) = 0 = T is Kato type. Obviously, Theorem 3.3 contains [14,
Theorems 13 and 16].

An elementary operator. Let A € TP and let B* € CTP. Define the ele-
mentary operator Aap € B(B(H)) and the generalized derivation 645 € B(B(H))
by Aap(X)=AXB — X and d45(X) = AX — XB. Let dap € B(B(H)) denote
either of the operators Aag and 4. We prove in the following that if B* has the
isoloid property (i.e., if the isolated points of o(B*) are eigenvalues of B*), then
f(dap) satisfies Weyl’s theorem for each f € H(o(dap)), thereby generalizing [8,
Theorem 3.1]. We start with the following lemma on the ascent of d4p.

Lemma 3.4. asc(dap — A) <1 for all A € C.
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Proof. Recall that A € TP if and only if A is M-hyponormal and B* € TCP
if and only if B* is dominant. Recall also that if A € B(H) is M-hyponormal
and B* € B(H) is dominant, then d4p5(X) = 0 = d4+p+(X) = 0 [20]. Thus
(dap)™1(0) C (da~p~)~%(0) [7, Theorem 2]. Evidently, if B* € CTP, then the
operators aB* and %B* are CTP for all « and non-zero 8 in C. Hence (dap —
A)7H0) C (dasp+ — X\)71(0) for all X\ € C. This, by [8, Proposition 2.3], implies
that asc(dap — \) < 1. O

Lemma 3.5. If B* is isoloid, then isoo(dap) Noki(dap) = 0.

Proof. We prove that Ho(dag — \) = (dap — A)~1(0) for all A € isoo(dap). Since
X €isoo(dap) = B(H) = Ho(dup— )@ K(dap—A), this would then imply that
B(H) = (dap — A\)~Y0) ® (dap — \)(B(H)), i.e. dap — A is Kato type and hence
A ¢ or:(dap). Recall that an M-hyponormal (equivalently, T'P) operator is isoloid
(indeed, the isolated points of the spectrum of such an operator are simple poles of
the resolvent of the operator), and that the eigenvalues of a dominant (equivalently,
CTP) operator are normal eigenvalues of the operator.

The case dap = Aap. Let A € isoo(Aap). We divide the proof into the
cases A\ = —1 and A # —1. Let ®4p = LsRp, where L4 and Rp € B(B(H)) are
operators of “left multiplication by A” and “right multiplication by B” (respec-
tively). If A = —1, then 0 € isoo(®Pap). Since o(Pap) = U{c(24) : z € o(B)}
[10, Theorem 3.2], we must have either 0 € isoo(B) or 0 € isoo(A). Suppose
that 0 € isoo(B). (The other case is similarly dealt with.) Then 0 can not be a
limit point of ¢(A). For if 0 is a limit point of o(A), then there exists a sequence
{an} € o(A) such that a,, — 0 € o(A). Choosing a non-zero z € o(B) we then
have a sequence {zay, } € o(®4p) such that za,, — 0 which contradicts the fact that
0 € isoo(®ap). (We remark here that such a choice of z is always possible, for if not
then o(B) = {0} and B is the zero operator.) The conclusion that 0 can not be a
limit point of 0(A) implies that either 0 ¢ o(A) or 0 € isoo(A). If 0 ¢ o(A), then A
is invertible and Ho(®ap) = Ho(Prp). Notice that 0 € isoo(B) = 0 € isoo(B*).
Since B* € CTP is isoloid, ker(B*) reduces B and B = 0 & B, with respect to
the decomposition H = ker(B*) @ ker-(B*) = H; ® H,, say, of H. Clearly, the
operator By = B|p, is invertible. Let X : Hy & Hy — H; & Hy have the matrix

representation X = [X;;]7,_,. Then

0 Xi3B} ] 0

. n - 1
JE%ng)IB(X)Hn :JI_EEOH{ 0 XooB%

if and only if both || X15B%||* and || X2, B2||* — 0 as n — co. The operator By be-
ing invertible, ®;p, is invertible = X5 = X9o = 0 and Ho(®ap) = (®a5)1(0).
Now let 0 € isoo(A). Then A = 0 @& Ay with respect to the decomposition
H = ker(A) ® ker+(A) = H| ® Hj, say, of H, where the operator Ay = Alp; is in-
vertible. Let X : Hy@&Hy — H{& H} have the matrix representation X = [X;;]7 ,_ .
Then

1

. n 1 . 0 0 "
A |05 5 (X[ = nlinéomo AngBg]H =0
1

n—oo

=0 «— X22=0,
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which implies Ho(®ap) = (®,5(0). This leaves us with the case A # —1, which
we consider next.

If A # —1, then (Aap — N)(X) = AXB — (14+ A\)X, and it follows from [10,
Theorem 3.2] that

o(Dap — A U{a (14X +zA):z€0(B)}.

If X € isoo(Aap), then 0 € zsoa(AAB — ). There exists a finite set {51, B2, ..., Bn}
of distinct non-zero values of z € isoo(B), and corresponding to these values of
z a finite set {aq,aq,...,a,} of distinct non-zero values a; € isoo(A) such that
a;F;i =1+ Aforall 1 <i<n. Let

Hy=\/"_ker(B—3:)", H{ =\/"_ker(A—a;), Hy = HS Hy and Hy = HOH].

Then A and B have the direct sum decompositions A = A1 & Ay and B = B & B,
where Ay = A] gy and By =B |z, are normal operators with finite spectrum, By is
invertible, Ay = Aly; B2 = Blu,, and 0(A1) No(Az) = 0 = o(B1) No(Bz). Let

X : Hy & Hy — H}| & Hj have the matrix representation X = [X;;]7,_;. Then

. E (Aa B, — N)™"(X11) (Aay B, — A)"(X12)
1 A _ )\ n o 1 101 102
nggo ||( AB ) 1m H |: AAzBl n(X21) (AAQBZ _ )\)n(X22)

@JLH;OH@A,.BJ V(K =0

ES
n

n—oo

for all 1 < 4,5 <2. Clearly, 0 ¢ 0(Aa,p, —A) for all 1 <4,j < 2 such that i,j # 1;
hence )
Jim [[(Aas; = N)"(Xig)||" =0 = Xi5=0
for all 1 < 4,5 < 2 such that 4,57 # 1. The operators A; and B; are normal.
Since Bj is invertible implies (A4, 5, —A)(X11) = (A1 X11 — X11(L+ N By ) By =
6A1((1+/\)B;1)(X11B1), and since
Tim [10%5(Y)

for normal C' and D [20, Lemma 2] (see also [5]),

Ho(Dayp, = A) = (Dayp, = N)7H0) = Ho(Lag — A) = (Bap — 2)7H0).

The case dap = dap. Let A € isoo(04p). Then 0 € isoo(dap — ), where
0(dap—A) = 0(A)—o(B+X) [10]. Hence o(A)No(B+M\) consists of points which are
isolated in both ¢(A) and ¢(B+ A). In particular, 0(A)No(B+ ) does not contain
any limit points of o(A) U o(B + A). There exist finite sets S1 = {a1,a9,...,an}
and Sy = (B, B2, ..., On) of distinct values «; and §; such that each «; is an isolated

point of o(A), each f; is an isolated point of o(B), and c; —3; = A forall 1 < i < n.
Let

H, = \/:L:lker(B—ai)*, H) = \/jzlker(A—ai), Hy = HoSH, and H), = HS Hj.

"_O<:>5€D< ) 0

Define the normal operators A; and B;, and the operators Ay and Bs, as before.

Letting X : H; ® Hy — H{ @ H) have the matrix representation X = [X;;]7,_,, it
is then seen that
1
: (6a,B;, — )\ )M(X11) (04,8, — M) (X12) |||
lim ||(3ap — A)" = i 1B1 1Bs ~0
A [[Gaz = A™(X i H { (Ganm, — N"(Xa1) (6435 — A" (Xa)

— nlLII;o||(5AiBJ_)\) (Xij) =0
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for all 1 < 4,5 < 2. Since 0(A4;) No(B; + ) = 0 for all 1 < 4,j < 2 such that
1,7 # 1 (so that 0 ¢ 0(dqp — A) for all 1 < 4,5 < 2 such that 4,5 # 1), X;; = 0 for
all 1 <4,j <2 such that i, j # 1. The operators A; and B; being normal

Tim [|(0a,8 = X" (Xu)l|7 =0 <= (6a, — N)(Xn) =0

[20, Lemma 2]. Hence Ho(d4,8, — A) = (64,8, — A)~(0), which implies that
Ho(dAB—/\)Z(5AB—)\)_1(O). O

Theorem 3.6. Let A € TP and B* € CTP. If B* is isoloid, then we have the
following:

(i) f(dap) satisfies Weyl’s theorem for each f € H(o(dap).

(i) d%p satisfies a-Weyl’s theorem.
If also d% g has SVEP, then:

(iii) f(dap) satisfies a-Weyl’s theorem for each f € Hi(o(dag)).

Proof. (i) We start by proving that dap and d¥ g satisfy Weyl’s theorem. Since
asc(dap — A) < 1 (by Lemma 3.4), dap has SVEP = dsp and d¥ p satisfy
Browder’s theorem (see [1, Corollary 2.12] and [12]). We prove that moo(dap) C
mo(dap), which would then imply moo(dap) = mo(dap) and hence that d 45 satisfies
Weyl’s theorem. Let A € moo(dap); then A € isoo(dap) and 0 < a(dap — ) <
00. Since isoo(dap) Noki(dag) = O (by Lemma 3.5), dap — A is Kato type and
B(H) = (dap —X\)"1(0) ® (dap — \)(B(H)) = )X is a simple pole of the resolvent
of dap = moo(dap) C mo(dap). The conclusion dap satisfies Weyl’s theorem
implies that o(dap) \ ow(dap) = mo0(dap) = mo(dap). Since

/\¢O’w(d,43) < (dAB—/\)E(I)(B(H)) and ind(dAB—/\)ZO
<~ (diyg— A") € ®(B(H)) and ind(dig —A*)=0
<~ )‘ ¢O-w(dj43)v

ow(daB) = 0yw(d¥ 5). Hence, since o(dap) = o(d 5),
o(dap)\ow(dap)=0(dap)\ow(dap)=mo0(dap)=m0(dar)=mo(d4p) CToo(dap)-

For the reverse inclusion, let A € moo(d% 5). Then a(d g — A[*) < 00 = B(dap —
A) < 00. Since A € isoo(dYp) => A € isoo(dap), both d4p and d¥ 5 have SVEP at
A. Thus, since (T— ) is Kato type, asc(dap—A) = dsc(dap—A) < oo ([1, Theorems
2.6 and 2.9]) and 0 < a(dap—A) = B(dap—) < oo ([13, Proposition 38.6]). Hence
X € mo(dap) = moo(dap), which implies that o(d% g) \ 0w (d% ) = Too(d 5)-

The isoloid property of d4p (see the proof of Lemma 3.5) implies that o(f(dag)\
moo(f(dag)) = f(o(dag) \ moo(dag)) [16, Lemma]. Since d4p has SVEP, we get
ow(f(dap)) = f(ow(dagp)) for every f € H(o(dag)) [6, Corollary 2.6]. Hence,
since U(dAB) \Uw(dAB) = 7T00<dAB)7

o(f(das) \ moo(f(daB))) = f(ow(dap)) = ow(fdag)),

i.e., f(dap) satisfies Weyl’s theorem.

To prove parts (i) and (iii) one argues as in the proof of Theorem 3.3. O
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