KATO TYPE OPERATORS AND WEYL'S THEOREM

B.P. DUGGAL, S.V. DJORDJEVIĆ, AND C.S. KUBRUSLY

ABSTRACT. A Banach space operator T satisfies Weyl's theorem if and only if T or T^* has SVEP at all complex numbers λ in the complement of the Weyl spectrum of T and T is Kato type at all λ which are isolated eigenvalues of T of finite algebraic multiplicity. If T^* (resp., T) has SVEP and T is Kato type at all λ which are isolated eigenvalues of T of finite algebraic multiplicity (resp., T is Kato type at all $\lambda \in \text{iso}\sigma(T)$), then T satisfies a-Weyl's theorem (resp., T^* satisfies a-Weyl's theorem).

1. Introduction

Let B(X) = B(X, X) denote the algebra of operators (equivalently, bounded linear transformations) on a Banach space X. Let $\sigma_w(T)$ denote the Weyl spectrum of T, and let $\pi_{00}(T)$ denote the set of isolated eigenvalues μ of T for which $\dim((T - \mu I)^{-1}(0)) < \infty$. An operator $T \in B(X)$ is said to satisfy Weyl's theorem if $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$. Sufficient conditions for an operator $T \in B(X)$ to satisfy Weyl's theorem have been considered by a number of authors in the recent past ([1], [4], [5], [8], [11] and [14]). Let $H_0(T - \lambda I) = \{x \in X : \lim_{n \longrightarrow \infty} ||(T - \lambda I)^n(x)||^{\frac{1}{n}} = 0\}$ denote the quasi-nilpotent part of $T \in B(X)$. One such condition which has attracted the attention of a number of authors is the property

$$\mathbf{H}(p) \qquad H_0(T - \lambda I) = (T - \lambda I)^{-p}(0)$$

for some integer $p \geq 1$ and all complex numbers λ (see [2], [4] and [14]). It is known that property $\mathbf{H}(p)$ is satisfied by a number of the commonly considered classes of operators (see [2] and [14]). Operators T satisfying property $\mathbf{H}(p)$ have finite ascent and are isoloid (i.e., isolated points μ of the spectrum are eigenvalues of T). For operators T satisfying property $\mathbf{H}(p)$, both T and T^* satisfy Weyl's theorem, and T^* satisfies a-Weyl's theorem. (See [2] and [14], where it is shown that property $\mathbf{H}(p)$ is equivalent to a number of other properties.)

An operator $T \in B(X)$ is said to be semi-regular if T(X) is closed and $T^{-1}(0) \subset T^{\infty}(X) = \bigcap_{n \in \mathbb{N}} T^n(X)$; T admits a generalized Kato decomposition, GKD for short, if there exists a pair of T-invariant closed subspaces (M, N) such that $X = M \oplus N$, the restriction $T|_M$ is quasinilpotent and $T|_N$ is semi-regular. We say that T is of Kato type at a point λ if $(T - \lambda I)|_M$ is nilpotent in the GKD for $(T - \lambda I)$. Fredholm operators are Kato type [10, Theorem 4], and operators $T \in B(X)$ satisfying property $\mathbf{H}(p)$ are Kato type at isolated points of $\sigma(T)$ (but not every Kato type operator T satisfies property $\mathbf{H}(p)$).

It is obvious that for an operator $T \in B(X)$, $(T - \lambda I)$ is Kato type for all $\lambda \in \sigma(T) \setminus \sigma_w(T)$, which implies that if T satisfies Weyl's theorem then T is Kato

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B47, 47A10, 47A11.

Keywords. Kato type, Weyl's theorems, single valued extension property, paranormal operators.

type at each $\lambda \in \pi_{00}(T)$. The role, if any, played by the Kato type of T at points $\lambda \in \pi_{00}(T)$ in determining T satisfies Weyl's theorem seems not to have attracted attention. This paper fills this gap by considering operators $T \in B(X)$ which are Kato type at points $\lambda \in \pi_{00}(T)$ or at points $\lambda \in \text{iso}\sigma(T)$. It is proved that a necessary and sufficient condition for $T \in B(X)$ to satisfy Weyl's theorem is that: (a) T or T^* has the single valued extension property, SVEP, at all points $\lambda \in \sigma(T) \setminus \sigma_w(T)$; (b) T is Kato type at each $\lambda \in \pi_{00}(T)$. If T satisfies (a) and (b)' T is Kato type at points $\lambda \in \text{iso}\sigma(T)$, then T^* satisfies Weyl's theorem. Furthermore, if T^* has SVEP and hypothesis (b) is satisfied (resp., T has SVEP and hypothesis (b)' is satisfied), then T satisfies a-Weyl's theorem (resp., T^* satisfies a-Weyl's theorem).

The plan of this note is as follows. We introduce our notation and terminology in Section 2 and prove our main result, along with some of its consequences, in Sections 3 and 4. We remark here that there exist operators such that they satisfy conditions (a) and (b), but do not satisfy property $\mathbf{H}(p)$: paranormal operators and the weighted unilateral shift $T = \mathrm{shift}(\{\frac{1}{k+1}\}_{k=1}^{\infty})$ are but two examples of such operators.

2. Notation and terminology.

An operator $T \in B(X)$ is said to be Fredholm, $T \in \Phi(X)$, if T(X) is closed and both the deficiency indices $\alpha(T) = \dim(T^{-1}(0))$ and $\beta(T) = \dim(X/T(X))$ are finite, and then the index of T, $\operatorname{ind}(T)$, is defined to be $\operatorname{ind}(T) = \alpha(T) - \beta(T)$. The ascent of T, $\operatorname{asc}(T)$, is the least non-negative integer n such that $T^{-n}(0) = T^{-(n+1)}(0)$ and the descent of T, $\operatorname{dsc}(T)$, is the least non-negative integer n such that $T^n(X) = T^{n+1}(X)$. (We shall, henceforth, shorten $(T - \lambda I)$ to $(T - \lambda)$.) The operator T is Weyl if it is Fredholm of index zero, and T is said to be Browder if it is Fredholm "of finite ascent and descent". Let \mathbf{C} denote the set of complex numbers. The (Fredholm) essential spectrum $\sigma_e(T)$, the Browder spectrum $\sigma_b(T)$ and the Weyl spectrum $\sigma_w(T)$ of T of are the sets

$$\sigma_e(T) = \{ \lambda \in \mathbf{C} : T - \lambda \text{ is not Fredholm} \};$$

 $\sigma_b(T) = \{ \lambda \in \mathbf{C} : T - \lambda \text{ is not Browder} \}$

and

$$\sigma_w(T) = \{ \lambda \in \mathbf{C} : T - \lambda \text{ is not Weyl} \}.$$

If we let $\rho(T)$ denote the resolvent set of the operator T, $\sigma(T)$ denote the usual spectrum of T and acc $\sigma(T)$ denote the set of accumulation points of $\sigma(T)$, then:

$$\sigma_e(T) \subseteq \sigma_w(T) \subseteq \sigma_b(T) \subseteq \sigma_e(T) \cup \operatorname{acc} \sigma(T).$$

Let $\pi_0(T)$ denote the set of *Riesz points* of T, and let $\pi_{00}(T)$ denote the set of eigenvalues of T of finite geometric multiplicity. Also, let $\pi_{a0}(T)$ be the set of $\lambda \in \mathbf{C}$ such that λ is an isolated point of $\sigma_a(T)$ and $0 < \dim(T - \lambda)^{-1}(0) < \infty$, where $\sigma_a(T)$ denote the approximate point spectrum of the operator $T \in B(X)$. Clearly, $\pi_{00}(T) \subseteq \pi_{a0}(T)$. We say that *Browder's theorem holds for* $T \in B(X)$ if

$$\sigma(T) \setminus \sigma_w(T) = \pi_0(T),$$

Weyl's theorem holds for T if

$$\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T),$$

and a-Weyl's theorem holds for T

$$\sigma_{wa}(T) = \sigma_a(T) \setminus \pi_{a0}(T),$$

where $\sigma_{wa}(T)$ denote the essential approximate point spectrum (i.e., $\sigma_{wa}(T) = \bigcap \{\sigma_a(T+K) : K \in K(X)\}$ with K(X) denoting the ideal of compact operators on X). If we let $\Phi_+(X) = \{T \in B(X) : \alpha(T) < \infty \text{ and } T(X) \text{ is closed}\}$ denote the semi-group of upper semi-Fredholm operators in B(X), then $\sigma_{wa}(T)$ is the complement in \mathbb{C} of all those λ for which $(T-\lambda) \in \Phi_+(X)$ and $\operatorname{ind}(T-\lambda) \leq 0$. The concept of a-Weyl's theorem was introduced by Rakočević: a-Weyl's theorem for $T \Longrightarrow Weyl$'s theorem for T, but the converse is generally false [15].

An operator $T \in B(X)$ has the single-valued extension property at $\lambda_0 \in \mathbf{C}$, SVEP at $\lambda_0 \in \mathbf{C}$ for short, if for every open disc \mathcal{D}_{λ_0} centered at λ_0 the only analytic function $f : \mathcal{D}_{\lambda_0} \to X$ which satisfies

$$(T-\lambda)f(\lambda)=0$$
 for all $\lambda \in \mathcal{D}_{\lambda_0}$

is the function $f \equiv 0$. Trivially, every operator T has SVEP at points of the resolvent $\mathbb{C} \setminus \sigma(T)$; also T has SVEP at $\lambda \in \mathrm{iso}\sigma(T)$. We say that T has SVEP if it has SVEP at every $\lambda \in \mathbb{C}$. The analytic core $K(T - \lambda)$ of $(T - \lambda)$ is defined by

$$K(T - \lambda) = \{x \in X : \text{there exists a sequence } \{x_n\} \subset X \text{ and } \delta > 0$$

for which $x = x_0, T(x_{n+1}) = x_n$ and $||x_n|| \le \delta^n ||x||$ for all $n = 1, 2, ...\}$.

We note that $H_0(T-\lambda)$ and $K(T-\lambda)$ are (generally) non-closed hyperinvariant subspaces of $(T-\lambda)$ such that $(T-\lambda)^{-p}(0) \subseteq H_0(T-\lambda)$ for all p=0,1,2,... and $(T-\lambda)K(T-\lambda) = K(T-\lambda)$ [13].

3. Main results.

We start by collecting together some results, which will be used in the sequel without further specific reference to the source. Every semi-Fredholm operator $T \in B(X)$ is of Kato type [10, Theorem 4], and a Kato type operator $T - \lambda$ such that T has SVEP at λ (resp., T^* has SVEP at λ) satisfies the property that $\operatorname{asc}(T-\lambda) < \infty$ (resp., $\operatorname{dsc}(T-\lambda) < \infty$) [1, Theorems 2.6 and 2.9]. It is easily seen that if $(T-\lambda)$ is Kato type, then the adjoint operator $(T^* - \lambda I^*)$ is also Kato type. If $\operatorname{asc}(T-\lambda) < \infty$ (resp., $\operatorname{dsc}(T-\lambda) < \infty$) for an operator $T \in B(X)$ and $\lambda \in \mathbb{C}$, then $\operatorname{ind}(T-\lambda) \leq 0$ (resp., $\operatorname{ind}(T-\lambda) \geq 0$) [9, Proposition 38.5].

Recall that a point $\lambda \in \sigma(T)$ is in $\pi_0(T)$ if and only if $(T - \lambda)$ is Fredholm of finite ascent and descent [3]. Obviously, $\pi_0(T) \subseteq \pi_{00}(T)$.

Proposition 3.1. If $T \in B(X)$, then $(T - \lambda)$ is Kato type for all $\lambda \in \pi_{00}(T)$ if and only if $\pi_{00}(T) = \pi_0(T)$.

Proof. If $\pi_{00}(T) = \pi_0(T)$, then to each $\lambda \in \pi_{00}(T)$ there corresponds an integer $p \ge 1$ such that $X = (T - \lambda)^{-p}(0) \oplus (T - \lambda)^p(X) \Longrightarrow (T - \lambda)$ is Kato type.

Conversely, let $\lambda \in \pi_{00}(T)$. Then $(T - \lambda)$ is Kato type implies $X = M \oplus N$, where $(T - \lambda)|_M$ is p-nilpotent for some integer $p \ge 1$ and $(T - \lambda)|_N$ is semi-regular. Since $\lambda \in \text{iso}\sigma(T)$, T has SVEP at λ , and, also, $(T - \lambda)|_N$ has SVEP at 0. Hence, $(T - \lambda)|_N$ is a semi-regular operator with SVEP in 0 and by [14, Lemma 2.1 (i)] is injective. Now we have

$$(T-\lambda)^{-n}(0) = ((T-\lambda)|_N)^{-n}(0) \oplus ((T-\lambda)|_M)^{-n}(0) = 0 \oplus M = M$$

for all $n \geq p$, i.e., $\operatorname{asc}(T - \lambda) \leq p$. Clearly, $\operatorname{asc}(T - \lambda) < \infty \Longrightarrow \operatorname{ind}(T - \lambda) \leq 0$. Since $(T^* - \lambda I^*)$ is also Kato type, and since $\lambda \in \operatorname{iso}(T^*)$ implies T^* has SVEP at

 λ , $\operatorname{ind}(T^* - \lambda I^*) \leq 0$. We have already seen that $\operatorname{ind}(T - \lambda) = -\operatorname{ind}(T^* - \lambda I^*) \leq 0$; hence $\operatorname{ind}(T - \lambda) = 0$. Since $\lambda \in \pi_{00}(T) \Longrightarrow 0 < \alpha(T - \lambda) < \infty$, it follows that $\alpha(T - \lambda) = \beta(T - \lambda) < \infty$. Taken together with $\operatorname{asc}(T - \lambda) = p$, this implies that $\operatorname{asc}(T - \lambda) = \operatorname{dsc}(T - \lambda) = p < \infty$ [9, Proposition 38.6], and hence that $\lambda \in \pi_0(T)$. Thus $\pi_{00}(T) \subseteq \pi_0(T)$. Since $\pi_0(T) \subseteq \pi_{00}(T)$ always, $\pi_{00}(T) = \pi_0(T)$. \square

Let $\mathcal{N}(T)$ denote the *null space* of T, and let $\gamma(T)$ denote the *minimal modulus* function of T (see [9, pp. 155]), i.e.

$$\gamma(T) = \inf \{ \frac{\|Tx\|}{d(x, \mathcal{N}(T))} : x \in X, x \notin \mathcal{N}(T) \}.$$

Corollary 3.2. The following conditions are equivalent for $T \in B(X)$.

- (i) $\lambda \in \pi_{00}(T)$ and $(T \lambda)$ is Kato type.
- (ii) $\lambda \in \pi_0(T)$.
- (iii) $\lambda \in \pi_{00}(T)$ and $(T \lambda)(X)$ is closed.
- (iv) $\lambda \in iso\sigma(T)$ and $\dim(H_0(T-\lambda)) < \infty$.
- (v) $\lambda \in iso\sigma(T)$ and $co\text{-}dim(K(T-\lambda)) < \infty$.
- (vi) $\lambda \in \pi_{00}(T)$ and $H_0(T-\lambda) = (T-\lambda)^{-p}(0)$ for some integer $p \ge 1$.
- (vii) $\lambda \in \pi_{00}(T)$ and $K(T-\lambda) = (T-\lambda)^p(X)$ for some integer $p \ge 1$.
- (viii) $\lambda \in \pi_{00}(T)$ and $dsc(T \lambda) < \infty$.
- (ix) $\lambda \in \pi_{00}(T)$ and λ is a pole of the resolvent of T.
- (x) $\lambda \in \pi_{00}(T)$ and $\gamma(T)$ is discontinuous at λ .

Proof. Equivalence of conditions (ii) to (x) is proved in [14, Proposition 2.12] (see also [2] and [4]). The equivalence of (i) and (ii) follows from Proposition 3.1. \Box

If T has SVEP, then T satisfies Browder's theorem [4]. Thus if T is Kato type for $\lambda \in \pi_{00}(T)$ (or satisfies any of the equivalent conditions in Corollary 3.2), then T satisfies Weyl's theorem. The following theorem shows that the SVEP hypothesis on T can be weakened to SVEP at all points in the complement of $\sigma_w(T)$.

Theorem 3.3. $T \in B(X)$ satisfies Weyl's theorem if and only if

- (a) T or T^* has SVEP at all $\lambda \in \sigma(T) \setminus \sigma_w(T)$;
- (b) T is Kato type at all $\lambda \in \pi_{00}(T)$.

Proof. If T satisfies Weyl's theorem, then $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$, and so, since $\lambda \in \sigma(T) \setminus \sigma_w(T) \Longrightarrow \lambda \in \text{iso}\sigma(T)$, both T and T^* have SVEP at points $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Again, if $\lambda \in \sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$, then $\lambda \in \Phi(X)$ and $\text{ind}(T - \lambda) = 0$ imply T is Kato type.

Conversely, let $\lambda \in \pi_{00}(T)$. Then, by hypothesis (b), $\lambda \in \pi_0(T)$ which implies that $(T - \lambda) \in \Phi(X)$ and $\operatorname{ind}(T - \lambda) = 0$. Hence $\lambda \in \sigma(T) \setminus \sigma_w(T)$, so that $\pi_{00}(T) \subseteq \sigma(T) \setminus \sigma_w(T)$. For the reverse inclusion, let $\lambda \in \sigma(T) \setminus \sigma_w(T)$. Then $(T - \lambda) \in \Phi(X)$ and $\operatorname{ind}(T - \lambda) = 0$. If T or T^* has SVEP at λ , then both $\operatorname{asc}(T - \lambda)$ and $\operatorname{dsc}(T - \lambda)$) are finite [1, Corollary 2.10], which implies that $\lambda \in \pi_0(T) \subseteq \pi_{00}(T)$. Hence $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T)$, and T satisfies Weyl's theorem. \square

Theorem 3.4. If T or T^* has SVEP at all $\lambda \in \sigma(T) \setminus \sigma_w(T)$ and T is Kato type at all $\lambda \in iso\sigma(T)$, then T^* satisfies Weyl's theorem.

Proof. The hypotheses imply that T satisfies Weyl's theorem, and $\sigma(T) \setminus \sigma_w(T) = \pi_{00}(T) = \pi_0(T)$. Since

$$\lambda \notin \sigma_w(T) \iff (T - \lambda) \in \Phi(X) \text{ and } \operatorname{ind}(T - \lambda) = 0$$

 $\iff (T^* - \lambda I^*) \in \Phi(X) \text{ and } \operatorname{ind}(T^* - \lambda I^*) = 0$
 $\iff \lambda \notin \sigma_w(T^*),$

 $\sigma_w(T) = \sigma_w(T^*)$. Hence, since $\sigma(T) = \sigma(T^*)$,

$$\sigma(T^*) \setminus \sigma_w(T^*) = \sigma(T) \setminus \sigma_w(T) = \pi_{00}(T) = \pi_0(T) = \pi_0(T^*) \subseteq \pi_{00}(T^*).$$

For the reverse inclusion, let $\lambda \in \pi_{00}(T^*)$. Then $\alpha(T^* - \lambda I^*) < \infty$. Since $\lambda \in \text{iso}\sigma(T^*) \Longrightarrow \lambda \in \text{iso}\sigma(T)$, both T and T^* have SVEP at λ . Thus, since $(T - \lambda)$ is Kato type, $\text{asc}(T - \lambda) = \text{dsc}(T - \lambda) < \infty$ (which implies that $\text{asc}(T^* - \lambda I^*) = \text{dsc}(T^* - \lambda I^*) < \infty$). Consequently, $0 < \alpha(T^* - \lambda I^*) = \beta(T^* - \lambda I^*) < \infty \Longrightarrow 0 < \alpha(T - \lambda) = \beta(T - \lambda) < \infty$. Hence $\lambda \in \pi_0(T) = \pi_{00}(T)$, which implies that $\sigma(T^*) \setminus \sigma_w(T^*) = \pi_{00}(T^*)$. \square

Remark 3.5. Theorem 3.4 fails if T is not Kato type at all $\lambda \in \text{iso}\sigma(T)$. Let $T \in B(\ell^2)$ be the weighted shift $T(x_1, x_2, ...) = (0, \frac{x_1}{2}, \frac{x_2}{3}, ...)$; then $T^*(x_1, x_2, x_3, ...) = (\frac{x_2}{2}, \frac{x_3}{3}, ...)$, both T and T^* have SVEP, $\pi_{00}(T) = \emptyset$, $\sigma(T) = \sigma(T^*) = \{0\}$, $\sigma_w(T) = \sigma_w(T^*) = \{0\}$ and $\pi_{00}(T^*) = \{0\}$. Trivially, T is Kato type at points $\lambda \in \sigma(T) \setminus \sigma_w(T)$, but T is not Kato type at $0 \in \text{iso}\sigma(T)$: T satisfies Weyl's theorem, but T^* does not satisfy Weyl's theorem.

Strengthening the hypothesis on SVEP, a result stronger than that of Theorems 3.3 and 3.4 holds.

Theorem 3.6. (i) If T^* has SVEP and T is Kato type at each $\lambda \in \pi_{00}(T)$, then T satisfies a-Weyl's theorem.

(ii) If T has SVEP and is of Kato type at each $\lambda \in iso\sigma(T)$, then T^* satisfies a-Weyl's theorem.

Proof. (i) The hypothesis T^* has SVEP implies $\sigma(T) = \sigma_a(T)$ [12, pp. 35], and hence $\pi_{a0}(T) = \pi_{00}(T)$. We prove that $\sigma_{wa}(T) = \sigma_w(T)$: since T satisfies Weyl's theorem (by Theorem 3.3), this would then imply that $\sigma_a(T) \setminus \sigma_{wa}(T) = \pi_{a0}(T)$. It being clear that $\lambda \notin \sigma_w(T) \Longrightarrow \lambda \notin \sigma_{wa}(T)$, we prove that $\lambda \notin \sigma_{wa}(T) \Longrightarrow \lambda \notin \sigma_w(T)$. Since $\lambda \notin \sigma_{wa}(T) \Longleftrightarrow (T-\lambda) \in \Phi_+(X)$ and $\operatorname{ind}(T-\lambda) \leq 0$, the hypothesis T^* has SVEP implies that $\operatorname{dsc}(T-\lambda) < \infty$, $0 < \alpha(T-\lambda) < \infty$ and $\operatorname{ind}(T-\lambda) \leq 0$. Again, since $\operatorname{dsc}(T-\lambda) < \infty$ implies $\operatorname{ind}(T-\lambda) \geq 0$, we have:

$$\lambda \notin \sigma_{wa}(T) \iff \operatorname{dsc}(T - \lambda) < \infty \text{ and } 0 < \alpha(T - \lambda) = \beta(T - \lambda) < \infty$$

 $\implies \lambda \notin \sigma_{w}(T).$

(ii) If T has SVEP, then $\sigma(T^*) = \sigma_a(T^*)$ [12, pp. 35] and $\pi_{a0}(T^*) = \pi_{00}(T^*)$. We prove that $\sigma_{wa}(T^*) = \sigma_w(T^*)$: since T^* satisfies Weyl's theorem (by Theorem 3.4), this would then imply that $\sigma_a(T^*) \setminus \sigma_{wa}(T^*) = \pi_{a0}(T^*)$. It being clear that $\sigma_{wa}(T^*) \subseteq \sigma_w(T^*)$, we prove the reverse inclusion. Since

$$\lambda \notin \sigma_{wa}(T^*) \iff (T^* - \lambda I^*) \in \Phi_+(X^*) \text{ and } \operatorname{ind}(T^* - \lambda I^*) \le 0,$$

the hypothesis T has SVEP implies that

$$\operatorname{dsc}(T^* - \lambda I^*) < \infty, 0 < \alpha(T^* - \lambda I^*) < \infty \text{ and } \operatorname{ind}(T^* - \lambda I^*) \le 0$$

$$\Longrightarrow \operatorname{dsc}(T^* - \lambda I^*) < \infty, 0 < \alpha(T^* - \lambda I^*) = \beta(T^* - \lambda I^*) < \infty$$

$$\Longrightarrow \lambda \notin \sigma_w(T^*).$$

Let $\mathcal{H}(\sigma(T))$ (resp., $\mathcal{H}_1(\sigma(T))$) denote the set of analytic functions which are defined on an open neighborhood \mathcal{U} of $\sigma(T)$ (resp., the set of $f \in \mathcal{H}(\sigma(T))$ which are non-constant on each of the connected components of the open neighborhood \mathcal{U} of $\sigma(T)$ on which f is defined). Recall that the operator T is said to be *isoloid* if each $\lambda \in \text{iso}\sigma(T)$ is an eigenvalue of T.

Lemma 3.7. If T is Kato type at $\lambda \in iso\sigma(T)$, then $\lambda \in \sigma_p(T)$.

Proof. If $\lambda \in \text{iso}\sigma(T)$, then T and T^* have SVEP at λ . Thus if $(T - \lambda)$ is Kato type, then $\text{asc}(T - \lambda) = \text{dsc}(T - \lambda) = p$ for some integer $p \geq 1$ and $X = (T - \lambda)^{-p}(0) \oplus (T - \lambda)^p(X)$ ([1, Theorems 2.6 and 2.9] and [12, Proposition 4.10.6]), which implies that λ is an eigenvalue of T [9, Proposition 50.2]. \square

Theorem 3.8. (i) If T or T^* has SVEP, and if T is Kato type at each $\lambda \in iso\sigma(T)$, then f(T) satisfies Weyl's theorem for each $f \in \mathcal{H}(\sigma(T))$.

(ii) If T^* has SVEP, and if T is Kato type at each $\lambda \in iso\sigma(T)$, then f(T) satisfies a-Weyl's theorem for each $f \in \mathcal{H}_1(\sigma(T))$.

Proof. (i) T being isoloid (by Lemma 3.7), $\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma(T) \setminus \pi_{00}(T))$ [11, Lemma]. If T or T^* has SVEP, then $\sigma_w(f(T)) = f(\sigma_w(T))$ for every $f \in \mathcal{H}(\sigma(T))$ [4, Corollary 2.6]. We already know from Theorem 3.3 that T satisfies Weyl's theorem. Hence

$$\sigma(f(T)) \setminus \pi_{00}(f(T)) = f(\sigma_w(T)) = \sigma_w(f(T)),$$

i.e., f(T) satisfies Weyl's theorem.

(ii) If T^* has SVEP, and $f \in \mathcal{H}_1(\sigma(T))$, then $f(T^*) = f(T)^*$ has SVEP [12, Theorem 3.3.9], which implies that $\sigma(f(T)) = \sigma_a(f(T))$. Arguing as in the proof of Theorem 3.6 it is seen that $\sigma_w(f(T)) = \sigma_{wa}(f(T))$. Since f(T) satisfies Weyl's theorem by part (i), f(T) satisfies a-Weyl's theorem. \square

4. Applications

An operator $T \in B(X)$ is said to be transaloid if $(T - \lambda)$ is normaloid for every complex number λ (i.e., if the spectral radius $r(T - \lambda)$ equals $||T - \lambda||$ for all $\lambda \in \mathbf{C}$). The transaloid property implies $H_0(T - \lambda) = (T - \lambda)^{-1}(0)$ for every $\lambda \in \mathbf{C}$ [4, Lemma 2.3]. If we let $\mathbf{H}(p)$, $1 \leq p$ some integer, denote the class of $T \in B(X)$ for which $H_0(T - \lambda) = (T - \lambda)^{-p}(0)$ for all $\lambda \in \mathbf{C}$, then the transaloid operators belong to the subclass $\mathbf{H}(1)$ of $\mathbf{H}(p)$. The class $\mathbf{H}(p)$ is large; it contains, in particular, the classes consisting of generalized scalar, subscalar and totally paranormal operators on a Banach space, multipliers of semi-simple Banach algebras, hyponormal, phyponormal (0 and <math>M-hyponormal operators on a Hilbert space (see [2], [4], [12] and [14] for further information). It is obvious that operators $T \in \mathbf{H}(p)$ have finite ascent (and hence, SVEP). If $\lambda \in \text{iso}\sigma(T)$, $T \in \mathbf{H}(p)$, then

$$X = H_0(T - \lambda) \oplus K(T - \lambda) = (T - \lambda)^{-p}(0) \oplus K(T - \lambda)$$
 \Longrightarrow $(T - \lambda)^{-p}(0)$ is complemented by the closed subspace
$$K(T - \lambda) \subseteq (T - \lambda)(X)$$
 \Longrightarrow $K(T - \lambda) = (T - \lambda)^p(X).$

Hence operators $T \in \mathbf{H}(p)$ are Kato type at each $\lambda \in \mathrm{iso}\sigma(T)$.

Corollary 4.1. Let $T \in B(X) \cap \mathbf{H}(p)$. Then:

- (i) f(T) satisfies Weyl's theorem for each $f \in \mathcal{H}(\sigma(T))$.
- (ii) If T^* has SVEP, then f(T) satisfies a-Weyl's theorem for each $f \in \mathcal{H}_1(\sigma(T))$.

Proof. Apply Theorem 3.8. \square

Corollary 4.1 had earlier been proved in [14] and [2] using a different argument. The corollary shows that the hypotheses T has SVEP in [4, Theorem 2.5] and T is isoloid in [4, Theorem 3.5] are redundant.

An operator $T \in B(X)$ is paranormal if $||Tx||^2 \leq ||T^2x||$ for all unit vectors $x \in X$ [9, pp. 229]. Paranormal operators do not belong to $\mathbf{H}(p)$ (see [5], Remark following Lemma 2.3). However, isolated points of the spectrum of a paranormal operator T are simple poles of the resolvent of T [5, Lemma 2.1]. The definition of paranormality of T implies that $asc(T) \leq 1$; hence T has SVEP at 0.

Corollary 4.2. If $T \in B(X)$ is paranormal, then both T and T^* satisfy Weyl's theorem.

Proof. We have already seen that T is Kato type at $\lambda \in \text{iso}\sigma(T)$: if we prove that T has SVEP at $\lambda \in \sigma(T) \setminus \sigma_w(T)$ then Theorems 3.3 and 3.4 would imply that both T and T^* satisfy Weyl's theorem. Let, as before, $\mathcal{N}(T)$ and $\gamma(T)$ denote the null space and the minimal modulus function of T, and let $d(x, \mathcal{N}(T)) = \inf_{y \in \mathcal{N}(T)} ||x - y||$ denote the distance of $x \in X$ from $\mathcal{N}(T)$. Let $(0 \neq)\lambda \in \sigma(T) \setminus \sigma_w(T)$; then $(T - \lambda) \in \Phi(X)$ and $\operatorname{ind}(T - \lambda) = 0$. We claim that $\lambda \in \operatorname{iso}\sigma(T)$. For if $\lambda \notin \operatorname{iso}\sigma(T)$, then, λ being a non-isolated eigenvalue of T, there exists a sequence of non-zero eigenvalues of T converging to T0. Recall from [5, Lemma 2.2] that eigenspaces corresponding to distinct non-zero eigenvalues of a paranormal operator are $\operatorname{orthogonal}$ (in the sense of T0. Birkhoff [7, pp. 93]). Hence $d(x_n, \mathcal{N}(T - \lambda)) \geq 1$ for all $x_n \in \mathcal{N}(T - \lambda_n)$ such that $||x_n|| = 1$. We have:

$$\delta(\lambda_n, \lambda) = \sup\{d(x_n, \mathcal{N}(T - \lambda)) : x_n \in \mathcal{N}(T - \lambda_n), ||x_n|| = 1\} \ge 1$$

for all n, which implies that

$$|\lambda_n - \lambda|/\delta(\lambda_n, \lambda) \longrightarrow 0$$
 as $n \longrightarrow \infty$.

But then

$$\gamma(T-\lambda) = |\lambda_n - \lambda|/\delta(\lambda_n, \lambda) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Since $(T - \lambda)(X)$ is closed, this is a contradiction [9, Proposition 36.1]. Consequently, points $(0 \neq) \lambda \in \sigma(T) \setminus \sigma_w(T)$ are isolated in $\sigma(T)$ and T has SVEP at all such points. As remarked upon above, $\operatorname{asc}(T) \leq 1$. Hence T has SVEP at all points $\lambda \in \sigma(T) \setminus \sigma_w(T)$. \square

As a final application of the results of the previous section, we consider the elementary operator $d_{AB} \in B(B(H))$, where H is a Hilbert space, A and $B^* \in B(H)$ are hyponormal operators (i.e., $|A^*|^2 \leq |A|^2$ and $|B|^2 \leq |B^*|^2$), and d_{AB} is either the generalized derivation $\delta_{AB}(X) = AX - XB$ or the elementary operator $\Delta_{AB}(X) = AXB - X$. It is then known that $asc(d_{AB} - \lambda) \leq 1$ for all complex numbers λ [6, Corollary 2.4] and $H_0(d_{AB} - \lambda) = (d_{AB} - \lambda)^{-1}(0)$ for $\lambda \in iso\sigma(d_{AB})$ (this is the content of the proof of [6, Theorem 2.7]). Thus d_{AB} has SVEP, and is of Kato type at all $\lambda \in iso\sigma(d_{AB})$. Applying the results of the previous section, we have next corollary that extends [6, Theorem 3.1].

Corollary 4.3. (i) d_{AB} (the conjugate operator) d_{AB}^* and $f(d_{AB})$ ($f \in \mathcal{H}(\sigma(d_{AB}))$) satisfy Weyl's theorem.

(ii) d_{AB}^* satisfies a-Weyl's theorem.

References

- [1] P. Aiena and O. Monsalve, The single valued extension property and the generalized Kato decomposition property, Acta Sci. Math. (Szeged) 67 (2001), 461–477.
- [2] P. Aiena and F. Villafañe, Weyl's theorem of some classes of operators, pre-print (2003).
- [3] S. R. Caradus, W. E. Pfaffenberger and Y. Bertram, Calkin Algebras and Algebras of operators on Banach Spaces, Marcel Dekker, New York(1974).
- [4] R.E. Curto and Y.M. Han, Weyl's theorem, a-Weyl's theorem and local spectral theory, J. London Math. Soc. 67 (2003), 499–509.
- [5] B.P. Duggal and S.V. Djordjević, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. Royal Irish Acad., to appear.
- [6] B. P. Duggal, Weyl's theorem for a generalized derivation and an elementary operator, Math. Vesnik 54(2002), 71-81.
- [7] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York (1964).
- [8] R. E. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.
- [9] H. G. Heuser, Functional Analysis, John Wiley and Sons (1982).
- [10] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Math. Anal. 6(1958), 261-322.
- [11] W. H. Lee and W. Y. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38(1996), 61-64.
- [12] K.B. Laursen and M.N. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford (2000).
- [13] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175.
- [14] M. Oudghiri, Weyl's and Browder's theorem for operators satisfying the SVEP, Studia Math. (to appear).
- [15] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.

5 Tudor Court, Amherst Road, London W13 8NE, England, U.K.

E-mail address: bpduggal@yahoo.co.uk

CIMAT, APDO. POSTAL 402, GUANAJUATO, GTO, 36000, MEXICO

 $E ext{-}mail\ address: slavdj@cimat.mx}$

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil

 $E\text{-}mail\ address: \verb|carlos@ele.puc-rio.br||$