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KATO TYPE OPERATORS AND WEYL’S THEOREM

B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

ABSTRACT. A Banach space operator T satisfies Weyl’s theorem if and only if
T or T* has SVEP at all complex numbers X in the complement of the Weyl
spectrum of T and T is Kato type at all A which are isolated eigenvalues of
T of finite algebraic multiplicity. If T* (resp., T')) has SVEP and T is Kato
type at all A which are isolated eigenvalues of T of finite algebraic multiplicity
(resp., T is Kato type at all A € isoo(T)), then T satisfies a-Weyl’s theorem
(resp., T* satisfies a-Weyl’s theorem).

1. INTRODUCTION

Let B(X) = B(X, X) denote the algebra of operators (equivalently, bounded
linear transformations) on a Banach space X. Let 0, (T) denote the Weyl spectrum
of T', and let moo(7") denote the set of isolated eigenvalues p of T' for which dim((T —
ul)~1(0)) < co. An operator T' € B(X) is said to satisfy Weyl’s theorem if o(T') \
0w (T) = moo(T). Sufficient conditions for an operator T € B(X) to satisfy Weyl’s
theorem have been considered by a number of authors in the recent past ([1], [4],
[5], [8], [11] and [14]). Let Ho(T — M) = {z € X : lim,__.o ||(T — M)™(z)||* =
0} denote the quasi-nilpotent part of T € B(X). One such condition which has
attracted the attention of a number of authors is the property

H(p) Ho(T = M) = (T = AM)7(0)

for some integer p > 1 and all complex numbers A (see [2], [4] and [14]). It is known
that property H(p) is satisfied by a number of the commonly considered classes of
operators (see [2] and [14]). Operators T satisfying property H(p) have finite ascent
and are isoloid (i.e., isolated points p of the spectrum are eigenvalues of T'). For
operators T satisfying property H(p), both T and T* satisfy Weyl’s theorem, and
T* satisfies a-Weyl’s theorem. (See [2] and [14], where it is shown that property
H(p) is equivalent to a number of other properties.)

An operator T' € B(X) is said to be semi-regular if T(X) is closed and T~1(0) C
T*(X) = NpenT™(X); T admits a generalized Kato decomposition, GKD for
short, if there exists a pair of T-invariant closed subspaces (M, N) such that X =
M @ N, the restriction T|p; is quasinilpotent and T'|y is semi-regular. We say
that T is of Kato type at a point A if (T" — AI)|ps is nilpotent in the GK D for
(T — M). Fredholm operators are Kato type [10, Theorem 4], and operators T' €
B(X) satisfying property H(p) are Kato type at isolated points of o(T") (but not
every Kato type operator 7" satisfies property H(p)).

It is obvious that for an operator T' € B(X), (T — AI) is Kato type for all
A€ 0(T)\ 0w(T), which implies that if T" satisfies Weyl’s theorem then T is Kato
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type at each A € moo(T'). The role, if any, played by the Kato type of T" at points
A € moo(T') in determining T satisfies Weyl’s theorem seems not to have attracted
attention. This paper fills this gap by considering operators T € B(X) which
are Kato type at points A € mo(T") or at points A € isoo(T). It is proved that
a necessary and sufficient condition for T € B(X) to satisfy Weyl’s theorem is
that: (a) T or T* has the single valued extension property, SVEP, at all points
A€ o(T)\ ou(T); (b) T is Kato type at each A\ € moo(T). If T satisfies (a)
and (b)" T is Kato type at points A € isoo(T), then T* satisfies Weyl’s theorem.
Furthermore, if 7* has SVEP and hypothesis (b) is satisfied (resp., T has SVEP and
hypothesis (b)’ is satisfied), then T satisfies a-Weyl’s theorem (resp., T* satisfies
a-Weyl’s theorem).

The plan of this note is as follows. We introduce our notation and terminology
in Section 2 and prove our main result, along with some of its consequences, in
Sections 3 and 4. We remark here that there exist operators such that they satisfy
conditions (a) and (b), but do not satisfy property H(p): paranormal operators
and the weighted unilateral shift T' :shift({k—}rl}gil) are but two examples of such
operators.

2. NOTATION AND TERMINOLOGY.

An operator T' € B(X) is said to be Fredholm, T" € ®(X), if T(X) is closed
and both the deficiency indices a(T) = dim(T~1(0)) and B(T) = dim(X/T(X))
are finite, and then the index of T', ind(T'), is defined to be ind(T') = «(T') — B3(T).
The ascent of T, asc(T), is the least non-negative integer n such that T-"(0) =
T~(+1(0) and the descent of T, dsc(T), is the least non-negative integer n such
that T"(X) = T"T1(X). (We shall, henceforth, shorten (T — AI) to (T — \).) The
operator T is Weyl if it is Fredholm of index zero, and T is said to be Browder
if it is Fredholm “of finite ascent and descent”. Let C denote the set of complex
numbers. The (Fredholm) essential spectrum o.(T), the Browder spectrum oy (7T)
and the Weyl spectrum o,,(T") of T' of are the sets

0.(T)={Ae€ C:T -\ isnot Fredholm};
op(T)={A€e C:T—X isnot Browder}

and
ow(T)={Ae€ C:T -\ isnot Weyl}.

If we let p(T') denote the resolvent set of the operator T, o(T") denote the usual
spectrum of T" and acc o(T') denote the set of accumulation points of o(T'), then:

0e(T) Coy(T) Cop(T) Co.(T)Uace o(T).

Let mo(T") denote the set of Riesz points of T, and let moo(7T") denote the set of
eigenvalues of T of finite geometric multiplicity. Also, let m,0(T) be the set of
A € C such that A is an isolated point of o, (T") and 0 < dim(7 — \)~%(0) < oo,
where 0,(T) denote the approximate point spectrum of the operator T € B(X).
Clearly, moo(T') C ma0(T). We say that Browder’s theorem holds for T € B(X) if

o(T) \ ow(T) = 0o (T),
Weyl’s theorem holds for T if
o(T) \ ow(T) = moo(T),
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and a-Weyl’s theorem holds for T
Owa(T) = 0a(T) \ mao(T),

where 0,,(T) denote the essential approximate point spectrum (i.e., 0ua(T) =
N{o.(T + K) : K € K(X)} with K(X) denoting the ideal of compact opera-
tors on X). If we let &, (X) = {T € B(X) : o(T) < oo and T(X) is closed}
denote the semi-group of upper semi-Fredholm operators in B(X), then 0,,(T) is
the complement in C of all those A for which (T'—\) € &, (X) and ind(T'— ) < 0.
The concept of a-Weyl’s theorem was introduced by Rakocevié: a-Weyl’s theorem
for T = Weyl’s theorem for T', but the converse is generally false [15].

An operator T' € B(X) has the single-valued extension property at A\g € C, SVEP
at A\g € C for short, if for every open disc D), centered at Ay the only analytic
function f : D), — X which satisfies

(T—XN)f(A)=0 forall \eDy,

is the function f = 0. Trivially, every operator T has SVEP at points of the
resolvent C\ o(T); also T has SVEP at X € isoo(T). We say that T has SVEP if
it has SVEP at every A € C. The analytic core K(T — X) of (T — X) is defined by

K(T — X\) = {z € X : there exists a sequence {z,} C X and 6 >0
for which = = zo, T(n41) =z, and |z, | < §"||z|| for all n=1,2,...}.

We note that Ho(T — A) and K (T — X) are (generally) non-closed hyperinvariant
subspaces of (T'— A) such that (T'— X\)7P(0) C Ho(T — A) for all p=10,1,2,... and
(T —NK(T —\) = K(T—\) [13].

3. MAIN RESULTS.

We start by collecting together some results, which will be used in the sequel
without further specific reference to the source. Every semi-Fredholm operator
T € B(X) is of Kato type [10, Theorem 4], and a Kato type operator T — A
such that T has SVEP at A (resp., T* has SVEP at \) satisfies the property that
asc(T — A) < oo (resp., dsc(T' — A) < 00) [1, Theorems 2.6 and 2.9]. It is easily seen
that if (T'— X) is Kato type, then the adjoint operator (T — AI*) is also Kato type.
If asc(T — A) < oo (resp., dsc(T — ) < o0) for an operator T € B(X) and X € C,
then ind(7 — ) <0 (resp., ind(T — A) > 0) [9, Proposition 38.5].

Recall that a point A € o(T) is in mo(T) if and only if (T — X) is Fredholm of
finite ascent and descent [3]. Obviously, mo(T") C moo(T).

Proposition 3.1. If T € B(X), then (T — \) is Kato type for all X\ € moo(T) if
and only if moo(T) = mo(T).

Proof. If moo(T) = mo(T), then to each A € moo(T") there corresponds an integer
p > 1 such that X = (T'— X\)7P(0) & (T — M)P(X) = (T — ) is Kato type.

Conversely, let A € mpo(T"). Then (T — A) is Kato type implies X = M @& N,
where (T'— \)| s is p-nilpotent for some integer p > 1 and (T'— \)|y is semi-regular.
Since A € isoo(T), T has SVEP at A, and, also, (T'— A)|nx has SVEP at 0. Hence,
(T — A)|n is a semi-regular operator with SVEP in 0 and by [14, Lemma 2.1 (i)] is
injective. Now we have

(T =27"0) = (T =N~)"™0) & (T = N)|m)"(0) =00 M =M

for all n > p, i.e., asc(T — A) < p. Clearly, asc(T — ) < oo = ind(T — X) < 0.
Since (T — AI'*) is also Kato type, and since A € isoo(T™*) implies T* has SVEP at
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A, ind(T* — A\I*) < 0. We have already seen that ind(T' —\) = —ind(T* — A\I*) < 0;
hence ind(T' — A) = 0. Since A € mpo(T) = 0 < a(T — A) < oo, it follows that
a(T — A) = B(T — X) < oo. Taken together with asc(T — A) = p, this implies that
asc(T — A\) =dsc(T — A) = p < o0 [9, Proposition 38.6], and hence that A € mo(T).
Thus mo(T") € mo(T). Since mo(T') C moo(T") always, moo(T) = mo(T). O

Let N (T) denote the null space of T, and let v(T') denote the minimal modulus
function of T (see [9, pp. 155]), i.e

[T
yT) = mf{ T NT) cxe X,z g N(T)}.

Corollary 3.2. The following conditions are equivalent for T € B(X).
(i) A € meo(T') and (T — X) is Kato type.
(i) A € mo(T).
(iii) A € moo(T) and (T — A)(X) is closed.
(iv) X € isoo(T) and dim(Ho(T — \)) < 0o
(v) A€ isoo(T) and co-dim(K(T — X)) < oo
(vi) A € moo(T') and Ho(T — X) = (T — X)~P(0) for some integer p > 1.
(vii) A € moo(T") and K(T — X\) = (T — M\)P(X) for some integer p > 1.
(viil) X € mo(T) and dsc(T — \) < oo
(ix) A € moo(T') and X is a pole of the resolvent of T.
(x) A € mo(T) and v(T) is discontinuous at A.

1
1

Proof. Equivalence of conditions (ii) to (x) is proved in [14, Proposition 2.12] (see
also [2] and [4]). The equivalence of (i) and (ii) follows from Proposition 3.1. O

If T has SVEP, then T satisfies Browder’s theorem [4]. Thus if T is Kato type for
X € moo(T) (or satisfies any of the equivalent conditions in Corollary 3.2), then T’
satisfies Weyl’s theorem. The following theorem shows that the SVEP hypothesis
on T can be weakened to SVEP at all points in the complement of o,,(T).

Theorem 3.3. T € B(X) satisfies Weyl’s theorem if and only if
(a) T or T* has SVEP at all X € o(T) \ 0, (T);
(b) T is Kato type at all A € moo(T).

Proof. If T satisfies Weyl’s theorem, then o(T) \ 0, (T) = meo(T), and so, since
A€ o(T)\ow(T) = X € isoo(T), both T and T* have SVEP at points A € o(T) \
ow(T). Again, if A € 0(T) \ 04 (T) = mo(T), then A € &(X) and ind(T — X) =0
imply T is Kato type.

Conversely, let A € mgo(T). Then, by hypothesis (b), A € mo(T) which implies
that (T'— A) € ®(X) and ind(T — A\) = 0. Hence A € o(T) \ 0,(T), so that
7m00(T) C o(T) \ 0w (T). For the reverse inclusion, let A € o(T) \ 0y, (7). Then
(T—X) € ®(X) and ind(T—X) = 0. If T or T* has SVEP at A, then both asc(T'— )
and dsc(T'—\)) are finite [1, Corollary 2.10], which implies that A € mo(T") C moo(T).
Hence o(T) \ 04, (T) = moo(T'), and T satisfies Weyl’s theorem. [

Theorem 3.4. If T or T* has SVEP at all A € 0(T) \ 0,(T) and T is Kato type
at all A € isoo(T), then T* satisfies Weyl’s theorem.



KATO TYPE OPERATORS AND WEYL’S THEOREM 5

Proof. The hypotheses imply that T satisfies Weyl’s theorem, and o(T) \ 0, (T) =
7T00(T) = 7T0(T). Since
Aow(T) < (T-X)ed(X) and ind(T—A)=0

— (T"=A[")e®(X) and ind(T*—A[")=0

= A¢o,(T"),
ow(T) = 0(T*). Hence, since o(T) = o(T*),

o(T*)\ 0w(T") = o(T) \ 0w(T) = moo(T) = mo(T) = mo(T™) < oo (T")-

For the reverse inclusion, let A € moo(T™). Then a(T* — A\*) < co. Since A €
isoo(T*) = X € isoo(T), both T and T™* have SVEP at A. Thus, since (T' — \)
is Kato type, asc(T' — A) = dsc(T' — A) < oo (which implies that asc(T™* — A\[*) =
dsc(T* — AI*) < 00). Consequently, 0 < a(T* — X\[*) = B(T* — M[*) < 0o =
0<al—X=08(T-X < oco. Hence A € mo(T) = moo(T'), which implies that
U(T*)\O'w(T*) :WOQ(T*). O

Remark 3.5. Theorem 3.4 fails if T is not Kato type at all A € isoo(T). Let T €
B(¢?) be the weighted shift T'(zy,x,...) = (0, 5, %, ..); then T (21, 0, 3, ...) =
(%, %,...), both T'and T* have SVEP, moo(T) = 0, o(T) = o(T*) = {0}, 0 (T) =
0w (T*) = {0} and moo(T*) = {0}. Trivially, T is Kato type at points A € o(T') \
ow(T), but T is not Kato type at 0 € isoo(T'): T satisfies Weyl’s theorem, but T*

does not satisfy Weyl’s theorem.

Strengthening the hypothesis on SVEP, a result stronger than that of Theorems
3.3 and 3.4 holds.

Theorem 3.6. (i) If T* has SVEP and T is Kato type at each A € moo(T'), then
T satisfies a-Weyl’s theorem.

(ii) If T has SVEP and is of Kato type at each \ € isoo(T), then T* satisfies
a-Weyl’s theorem.

Proof. (i) The hypothesis T* has SVEP implies o(T") = 0,(T) [12, pp. 35], and
hence 7q0(T) = moo(T'). We prove that 0y, (T) = 0, (T'): since T satisfies Weyl’s
theorem (by Theorem 3.3), this would then imply that 04 (T) \ owe(T) = 7Tao(T).
It being clear that A ¢ 0,(T) = A & 0o (T'), we prove that A ¢ 0, (T) = \ ¢
0w(T). Since A ¢ 0o (T) < (T—A) € &, (X) and ind(T — ) < 0, the hypothesis
T* has SVEP implies that dsc(T — A) < 00, 0 < a(T' —\) < o0 and ind(T'— ) < 0.
Again, since dsc(T — \) < oo implies ind(T" — A) > 0, we have:

A¢0y(T) <= dsc(T—A)<oo and 0 < a(T—AN)=8(T—-)) <0
= A& o,(T).

(ii) If T has SVEP, then o(T*) = o,(T*) [12, pp. 35] and 7a0(T™) = meo(T™).
We prove that 0,(T*) = 0y, (T*): since T* satisfies Weyl’s theorem (by Theorem
3.4), this would then imply that o4 (T*) \ 0wa(T*) = Ta0(T*). It being clear that
Owa(T*) C 0y (T*), we prove the reverse inclusion. Since

A ¢ 0pa(T*) == (T* — AI*) € &, (X*) and ind(T* — A[*) <0,
the hypothesis T" has SVEP implies that
dsc(T* — A[*) < 00,0 < a(T* — M[*) < 00 and ind(T* — AI*) <0
= dsc(T" = A[*) < 00,0 < a(T* = A\I*) = B(T* = A\[") < >©
= Aé¢o,(T"). O
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Let H(o(T)) (resp., Hi(c(T))) denote the set of analytic functions which are
defined on an open neighborhood U of (T (resp., the set of f € H(o(T)) which
are non-constant on each of the connected components of the open neighborhood
U of o(T) on which f is defined). Recall that the operator T is said to be isoloid
if each A € isoo(T) is an eigenvalue of 7.

Lemma 3.7. If T is Kato type at X € isoo(T), then X € op(T).

Proof. It X € isoo(T'), then T and T* have SVEP at A\. Thus if (T — \) is Kato
type, then asc(T — ) = dsc(T — ) = p for some integer p > 1 and X = (T —
A)7P(0) @ (T — MP(X) ([1, Theorems 2.6 and 2.9] and [12, Proposition 4.10.6]),
which implies that A is an eigenvalue of T [9, Proposition 50.2]. O

Theorem 3.8. (i) If T orT* has SVEP, and if T is Kato type at each A € isoo(T),
then f(T) satisfies Weyl’s theorem for each f € H(o(T)).

(ii) If T* has SVEP, and if T is Kato type at each A\ € isoo(T), then f(T)
satisfies a-Weyl’s theorem for each f € Hi(o(T)).

Proof. (i) T being isoloid (by Lemma 3.7), o(f(T)) \ moo(f(T)) = f(o(T) \ w00 (T"))
[11, Lemmal. If T or T* has SVEP, then o, (f(T)) = f(ow(T)) for every f €
H(o(T)) [4, Corollary 2.6]. We already know from Theorem 3.3 that T satisfies
Weyl’s theorem. Hence

o(f(T) \ oo (f(T)) = f(ow(T)) = 0w (f(T));

i.e., f(T) satisfies Weyl’s theorem.

(11) If T* has SVEP, and f € Hi(o(T)), then f(T*) = f(T)* has SVEP [12,
Theorem 3.3.9], which implies that o(f(T)) = 04(f(T)). Arguing as in the proof
of Theorem 3.6 it is seen that o, (f(T)) = owa(f(T)). Since f(T) satisfies Weyl’s
theorem by part (7), f(T') satisfies a-Weyl’s theorem. [

4. APPLICATIONS

An operator T' € B(X) is said to be transaloid if (T — X) is normaloid for every
complex number A (i.e., if the spectral radius (T — X) equals ||T' — || for all
A € C). The transaloid property implies Ho(T — \) = (T'— X)~1(0) for every A € C
[4, Lemma 2.3]. If we let H(p), 1 < p some integer, denote the class of T € B(X) for
which Ho(T — ) = (T'—X)~P(0) for all A € C, then the transaloid operators belong
to the subclass H(1) of H(p). The class H(p) is large; it contains, in particular, the
classes consisting of generalized scalar, subscalar and totally paranormal operators
on a Banach space, multipliers of semi-simple Banach algebras, hyponormal, p-
hyponormal (0 < p < 1) and M -hyponormal operators on a Hilbert space (see [2],
[4], [12] and [14] for further information). It is obvious that operators T' € H(p)
have finite ascent (and hence, SVEP). If A € isoo(T'), T' € H(p), then

X=H(T-NeKT-N=T-)NP0a&KT-2X
= (T'—X\)7P(0) is complemented by the closed subspace
K(T - X)) C(T-XN(X)
= K(T-))=(T-X)NPX).

Hence operators T' € H(p) are Kato type at each A € isoo(T).
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Corollary 4.1. Let T € B(X)NH(p). Then:
(i) f(T) satisfies Weyl’s theorem for each f € H(o(T)).
(i) If T* has SVEP, then f(T) satisfies a- Weyl’s theorem for each f € Hi(o(T)).

Proof. Apply Theorem 3.8. O

Corollary 4.1 had earlier been proved in [14] and [2] using a different argument.
The corollary shows that the hypotheses T has SVEP in [4, Theorem 2.5] and T is
isoloid in [4, Theorem 3.5] are redundant.

An operator T € B(X) is paranormal if ||Tz||?> < ||T?z|| for all unit vectors
x € X [9, pp. 229]. Paranormal operators do not belong to H(p) (see [5], Remark
following Lemma 2.3). However, isolated points of the spectrum of a paranormal
operator T are simple poles of the resolvent of T' [5, Lemma 2.1]. The definition of
paranormality of T' implies that asc(T) < 1; hence T has SVEP at 0.

Corollary 4.2. If T € B(X) is paranormal, then both T and T* satisfy Weyl’s
theorem.

Proof. We have already seen that 7" is Kato type at A € isoo(T'): if we prove that T'
has SVEP at A € o(T')\ 04, (T) then Theorems 3.3 and 3.4 would imply that both T
and T™* satisfy Weyl’s theorem. Let, as before, N'(T') and v(T') denote the null space
and the minimal modulus function of T, and let d(z,N(T)) = inf,cn (1) ||z — 9|
denote the distance of z € X from N (T'). Let (0 #)\ € 0(T)\ow(T); then (T'—)\) €
®(X) and ind(T — A) = 0. We claim that A € isoo(T'). For if A ¢ isoo(T), then, A
being a non-isolated eigenvalue of T', there exists a sequence of non-zero eigenvalues
of T converging to A. Recall from [5, Lemma 2.2] that eigenspaces corresponding to
distinct non-zero eigenvalues of a paranormal operator are orthogonal (in the sense
of G. Birkhoff [7, pp. 93]). Hence d(z,, N'(T —\)) > 1 for all z,, € N(T — \,,) such
that ||z, || = 1. We have:

(A, A) = sup{d(zn, N(T = X)) : &, € N(T — \p), ||zn]| = 1} > 1
for all n, which implies that
[An = Al/0(An, A) — 0 as n — oc.

But then
YT = A) = |An = A|/d(An, A) — 0 as n — oo.

Since (T — A\)(X) is closed, this is a contradiction [9, Proposition 36.1]. Conse-
quently, points (0 #£)A € o(T) \ 0, (T) are isolated in o(T) and T has SVEP at
all such points. As remarked upon above, asc(T)) < 1. Hence T has SVEP at all
points A € o(T) \ 0,(T). O

As a final application of the results of the previous section, we consider the ele-
mentary operator dap € B(B(H)), where H is a Hilbert space, A and B* € B(H)
are hyponormal operators (i.e., |A*|> < |A|? and |B|? < |B*|?), and dap is ei-
ther the generalized derivation d4p(X) = AX — X B or the elementary operator
App(X) = AXB — X. It is then known that asc(dap — A) < 1 for all complex
numbers A [6, Corollary 2.4] and Ho(dap —\) = (dag — A)~1(0) for A € isoo(dap)
(this is the content of the proof of [6, Theorem 2.7]). Thus d4p has SVEP, and is
of Kato type at all A € isoo(dap). Applying the results of the previous section, we
have next corollary that extends [6, Theorem 3.1].
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Corollary 4.3. (i) dap (the conjugate operator) d% 5 and f(dag) (f € H(o(dag)))
satisfy Weyl’s theorem.

(1]

[6]

[7
(8]

[9]
(10]

(11]
(12]
(13]
(14]

(15]

(ii) d% g satisfies a-Weyl’s theorem.
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