CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

B.P. DUGGAL, C.S. KUBRUSLY, AND N. LEVAN

ABSTRACT. A Hilbert Space operator T is of class $\mathcal Q$ if $T^{2*}T^2-2T^*T+I$ is nonnegative. Every paranormal operator is of class $\mathcal Q$, but class- $\mathcal Q$ operators are not necessarily normaloid. It is shown that if a class- $\mathcal Q$ contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator $Q=T^{2*}T^2-2T^*T+I$ also is a proper contraction.

1. Introduction

Let \mathcal{H} be a nonzero complex Hilbert space. By a subspace \mathcal{M} of \mathcal{H} we mean a closed linear manifold of \mathcal{H} , and by an operator T on \mathcal{H} we mean a bounded linear transformation of \mathcal{H} into itself. A subspace \mathcal{M} is invariant for T if $T(\mathcal{M}) \subseteq \mathcal{M}$, and nontrivial if $\{0\} \neq \mathcal{M} \neq \mathcal{H}$. Let $\mathcal{B}[\mathcal{H}]$ denote the algebra of all operators on \mathcal{H} . For an arbitrary operator T in $\mathcal{B}[\mathcal{H}]$ set, as usual, $|T| = (T^*T)^{\frac{1}{2}}$ (the absolute value of T) and $[T^*, T] = T^*T - TT^* = |T|^2 - |T^*|^2$ (the self-commutator of T), where T^* is the adjoint of T, and consider the following standard definitions: T is hyponormal if $[T^*, T]$ is nonnegative (i.e., $|T^*|^2 \leq |T|^2$; equivalently, $||T^*x|| \leq ||Tx||$ for every x in \mathcal{H}), T is of class \mathcal{U} if $|T^2| - |T|^2$ is nonnegative (i.e., $|T|^2 \leq |T^2|$), paranormal if $||Tx||^2 \leq ||T^2||$ (where |T|) denotes the spectral radius of T). These are related by proper inclusion:

Hyponormal \subset Class $\mathcal{U} \subset$ Paranormal \subset Normaloid.

A contraction is an operator T such that $||T|| \le 1$ (i.e., $||Tx|| \le ||x||$ for every x in \mathcal{H} ; equivalently, $T^*T \le I$). A proper contraction is an operator T such that ||Tx|| < ||x|| for every nonzero x in \mathcal{H} (equivalently, $T^*T < I$). A strict contraction is an operator T such that ||T|| < 1 (i.e., $\sup_{0 \ne x} (||Tx||/||x||) < 1$ or, equivalently, $T^*T \prec I$, which means that $T^*T \le \gamma I$ for some $\gamma \in (0,1)$). Again, these are related by proper inclusion: Strict Contraction \subset Proper Contraction \subset Contraction.

It was recently proved in [10] that if a hyponormal contraction T has no non-trivial invariant subspace, then T is a proper contraction and its self-commutator $[T^*,T]$ is a strict contraction. This was extended in [5] to contractions of class \mathcal{U} (if a contraction T in \mathcal{U} has no nontrivial invariant subspace, then both T and the nonnegative operator $|T^2| - |T|^2$ are proper contractions), and to paranormal contractions in [6]: If a paranormal contraction T has no nontrivial invariant subspace, then T is a proper contraction and so is the nonnegative operator $|T^2|^2 - 2|T|^2 + I$. In the present paper we extend this result to contractions of class \mathcal{Q} . Operators of

Date: September 15, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A15; Secondary 47B20.

 $Key\ words\ and\ phrases.$ Paranormal operators, invariant subspaces, proper contractions.

Supported in part by Brazilian National Research Council (CNPq).

class Q are defined below. This is a class of operators that properly includes the paranormal operators.

2. Operators of Class Q

In this section we define operators of class \mathcal{Q} and consider some basic properties, examples and counterexamples, in order to put this class in its due place. Recall that, for any real λ and any operator $T \in \mathcal{B}[\mathcal{H}]$,

$$\lambda \|T^2 x\| \|x\| \le \frac{1}{2} (\|T^2 x\|^2 + \lambda^2 \|x\|^2)$$

and, in particular, for $\lambda = 1$,

$$||T^2x|| ||x|| \le \frac{1}{2} (||T^2x||^2 + ||x||^2),$$

for every $x \in \mathcal{H}$. An operator $T \in \mathcal{B}[\mathcal{H}]$ is paranormal if

$$||Tx||^2 \le ||T^2x|| ||x||$$

for every $x \in \mathcal{H}$. Paranormal operators have been much investigated since [8] (see e.g., [7] and [9]). The following alternative definition is well-known. An operator $T \in \mathcal{B}[\mathcal{H}]$ is paranormal if and only if

$$O \le T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I$$

for all $\lambda > 0$ (cf. [1], also see [12]). Equivalently, T is paranormal if and only if

$$\lambda ||Tx||^2 \le \frac{1}{2} (||T^2x||^2 + \lambda^2 ||x||^2)$$

for every $x \in \mathcal{H}$, for all $\lambda > 0$. Note that the above inequalities hold trivially for every $\lambda \leq 0$ for all operators $T \in \mathcal{B}[\mathcal{H}]$. Take any operator T in $\mathcal{B}[\mathcal{H}]$ and set

$$Q = T^{2*}T^2 - 2T^*T + I.$$

Definition 1. An operator T is of class Q if $O \leq Q$. Equivalently, $T \in Q$ if

$$||Tx||^2 \le \frac{1}{2}(||T^2x||^2 + ||x||^2)$$
 for every x .

Since $O \le T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I$ if and only if $\lambda^{-\frac{1}{2}}T \in \mathcal{Q}$ for any $\lambda > 0$.

T is paranormal if and only if
$$\lambda T \in \mathcal{Q}$$
 for all $\lambda > 0$.

Every paranormal operator is a normaloid of class Q. That is, with \mathcal{N} and \mathcal{P} standing for the classes of all normaloid and paranormal operators from $\mathcal{B}[\mathcal{H}]$, respectively, it is clear that

$$\mathcal{P} \subset \mathcal{Q} \cap \mathcal{N}$$
.

However, $\mathcal{Q} \not\subseteq \mathcal{N}$ and $\mathcal{Q} \cap \mathcal{N} \not\subseteq \mathcal{P}$. Indeed, $S = \lambda \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathcal{Q}$ for every $\lambda \in (0, 1/\sqrt{2}]$ but $S \not\in \mathcal{N}$ (nonzero nilpotent) for all $\lambda \neq 0$. Moreover, $T = I \oplus S$ lies in $(\mathcal{Q} \cap \mathcal{N}) \setminus \mathcal{P}$ for any $\lambda \in (0, 1/\sqrt{2}]$. In fact, S is not normaloid, and hence not paranormal, which implies that T is not paranormal (restriction of a paranormal to an invariant subspace is again paranormal), and r(T) = ||T|| = 1. Thus T is a normaloid contraction of class \mathcal{Q} that is not paranormal.

Proposition 1. Let $T \in \mathcal{B}[\mathcal{H}]$ be an operator of class \mathcal{Q} .

- (a) The restriction of T to an invariant subspace is again a class- $\mathcal Q$ operator.
- (b) If T is invertible, then T^{-1} is of class Q.

Proof. Let T be an operator of class Q and let M be a T-invariant subspace.

- (a) If $u \in \mathcal{M}$, then $2\|T\|u\|^2 = 2\|Tu\|^2 \le \|T^2u\|^2 + \|u\|^2 = \|(T\|u)^2u\|^2 + \|u\|^2$, and so $T\|u\|$ is of class \mathcal{Q} .
- (b) If T is invertible, then $2\|x\|^2 = 2\|TT^{-1}x\|^2 \le \|T^2(T^{-1}x)\|^2 + \|T^{-1}x\|^2$ for every $x \in \mathcal{H}$. Take any y in $\mathcal{H} = \operatorname{ran}(T)$ so that y = Tx, $x = T^{-1}y$ and $T^{-1}x = T^{-2}y$ for some x in \mathcal{H} . Thus $2\|T^{-1}y\|^2 \le \|y\|^2 + \|T^{-2}y\|^2$ by the above inequality, and so T^{-1} is of class \mathcal{Q} .

Some properties that the paranormal operators inherit from the hyponormals survive up to class \mathcal{Q} , as in the case of Proposition 1. However, many important properties shared by the hyponormals do not travel well up to class \mathcal{Q} . For instance, there exist nonzero quasinilpotent operators of class \mathcal{Q} (a quasinilpotent normaloid is obviously null), compact operators of class \mathcal{Q} that are not normal (every compact paranormal is normal [11]), and also operators of class \mathcal{Q} for which isolated points of the spectrum are not eigenvalues (isolated points of the spectrum of a paranormal are eigenvalues [2]). Here is an example. The compact weighted unilateral shift $T = \text{shift}(\{\frac{1}{k+1}\}_{k=1}^{\infty})$ is a quasinilpotent (r(T) = 0) contraction $(||T|| = \frac{1}{2})$ with no eigenvalues (0 is in the residual spectrum of T). Clearly, since T is not normaloid, it is not paranormal. But it is of class \mathcal{Q} . Indeed,

$$O < \operatorname{diag}(\left\{1 - \frac{2}{(k+1)^2}\right\}_{k=1}^{\infty}) = I - 2T^*T < T^{2*}T^2 - 2T^*T + I.$$

Another common property of hyponormal and paranormal operators that does not apply to class \mathcal{Q} is that a multiple of a class- \mathcal{Q} operator may not be of class \mathcal{Q} . For example, $S = \lambda \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathcal{Q}$ for every $\lambda \in (0, 1/\sqrt{2}]$, but $S \notin \mathcal{Q}$ for all $\lambda > 1/\sqrt{2}$. Actually, \mathcal{Q} is not a cone in $\mathcal{B}[\mathcal{H}]$, although its intersection with the closed unit ball is balanced (a subset A of a linear space is balanced if $\alpha A \subseteq A$ whenever $|\alpha| \leq 1$).

Proposition 2. Let T be a Hilbert space operator.

- (a) If $||T|| \le 1/\sqrt{2}$, then $T \in \mathcal{Q}$.
- (b) If $T^2 = O$, then $T \in \mathcal{Q}$ if and only if $||T|| \le 1/\sqrt{2}$.
- (c) If $T \in \mathcal{Q}$, $T^2 \neq O$ and $|\alpha| \leq \min\{1, ||T^2||^{-1}\}$, then $\alpha T \in \mathcal{Q}$.

In particular, if $T \in \mathcal{Q}$ is a contraction, then $\alpha T \in \mathcal{Q}$ whenever $|\alpha| \leq 1$.

(d) A contraction T in Q is paranormal if and only if $O \leq T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I$ for all $\lambda \in (0,1)$.

Proof. Let T be any operator in $\mathcal{B}[\mathcal{H}]$.

(a) Since $O \leq I - 2T^*T$ (that is, $2T^*T \leq I$) if and only if αT for $|\alpha| = \sqrt{2}$ is a contraction, it follows that $||\sqrt{2}T|| \leq 1$ implies $T \in \mathcal{Q}$ because

$$I - 2T^*T \le T^{2*}T^2 - 2T^*T + I.$$

- (b) If $T^2 = O$, then $T \in \mathcal{Q}$ if and only if $O \leq I 2T^*T$.
- (c) If T lies in \mathcal{Q} , then

$$2|\alpha|^2 T^* T \le |\alpha|^2 T^{2*} T^2 + |\alpha|^2 I$$

and hence, for every scalar α ,

$$2|\alpha|^2 T^*T - |\alpha|^4 T^{2*}T^2 - I \le (1 - |\alpha|^2)(|\alpha|^2 T^{2*}T^2 - I).$$

Suppose $T^2 \neq O$. Note: $|\alpha| \leq ||T^2||^{-1}$ (i.e., αT^2 is a contraction) if and only if $|\alpha|^2 T^{2*} T^2 \leq I$. If, in addition, $|\alpha| \leq 1$, then $(1 - |\alpha|^2) (|\alpha|^2 T^{2*} T^2 - I) \leq O$, and therefore $\alpha T \in \mathcal{Q}$.

(d) If $T \in \mathcal{Q}$ is a contraction, then αT lies in \mathcal{Q} for all $\alpha \in (0,1]$ or, equivalently (with $\lambda = \alpha^{-1}$), $O \leq T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I$ for all $\lambda \geq 1$. Thus, if $T \in \mathcal{Q}$ is a contraction, then the above inequality holds for all $\lambda > 0$ if and only if it holds for all $\lambda \in (0,1)$. Therefore, a contraction T of class \mathcal{Q} is paranormal if and only if $O \leq T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I$ for all $\lambda \in (0,1)$.

Corollary 1. If $T \in \mathcal{Q}$ is invertible, then $\alpha T \in \mathcal{Q}$ for every scalar α such that either $|\alpha| \leq \min\{1, \|T^2\|^{-1}\}$ or $|\alpha| \geq \max\{1, \|T^{-2}\|\}$.

Proof. Take an invertible $T \in \mathcal{Q}$ and any scalar α . Proposition 2 ensures that

$$\alpha T \in \mathcal{Q}$$
 whenever $|\alpha| \le \min\{1, ||T^2||^{-1}\},$

and Proposition 1 says that $T^{-1} \in \mathcal{Q}$. Then $\beta T^{-1} \in \mathcal{Q}$ for every nonzero scalar β such that $|\beta| \leq \min\{1, \|T^{-2}\|^{-1}\}$ by Proposition 2. Put $\gamma = \beta^{-1}$ so that $(\gamma T)^{-1}$ lies in \mathcal{Q} for each scalar γ such that $|\gamma|^{-1} \leq \min\{1, \|T^{-2}\|^{-1}\}$; equivalently, such that $|\gamma| \geq \max\{1, \|T^{-2}\|\}$. Therefore, applying Proposition 1 again, it follows that

$$\gamma T \in \mathcal{Q}$$
 whenever $|\gamma| \ge \max\{1, ||T^{-2}||\},$

which completes the proof.

If T is an invertible operator in $\mathcal Q$ and $\min\{1,\|T^2\|^{-1}\}=\max\{1,\|T^{-2}\|\}$, then the above corollary ensures that T is paranormal. In particular, if T is an invertible contraction in $\mathcal Q$ for which the above min and max coincide, then T is an invertible paranormal contraction; a unitary operator, actually, as we shall see in Proposition 3 below (every invertible contraction for which the above min and max coincide is unitary). Note that there exist invertible normaloid contractions in $\mathcal Q$ that are not unitary so that the above min and max do not coincide. For instance, a weighted bilateral shift with increasing positive weights in (1/2,1) is a nonunitary invertible hyponormal contraction, thus paranormal, and so a normaloid of class $\mathcal Q$.

Proposition 3. If T is an invertible contraction and

$$\min\{1, \|T^n\|^{-1}\} = \max\{1, \|T^{-n}\|\}$$

for some positive integer n, then T is unitary.

Proof. Take any positive integer n. If T is an invertible operator, then so is T^n . If $\|T\| \le 1$, then $\|T^n\|^{-1} \ge 1$ and hence $\min\{1, \|T^n\|^{-1}\} = 1$. But $1 \le \|T^{-n}\| \|T^n\|$, and so $\|T^{-n}\| \ge 1$, which implies that $\max\{1, \|T^{-n}\|\} = \|T^{-n}\|$. If min and max coincide, then $\|T^{-n}\| = 1$ and T^n is unitary (reason: $\|T^n\| \le 1$, and an invertible operator U such that U and U^{-1} are both contractions must be unitary). But if T is a contraction and T^n is an isometry, then T is an isometry. Indeed, if T is a contraction, then so is $T^{(n-1)}$, which means that $T^{*(n-1)}T^{(n-1)} \le I$, and therefore

$$I = T^{*n}T^n = T^*(T^{*(n-1)}T^{(n-1)})T \le T^*T \le I$$

so that T is an isometry. Dually, if T is a contraction and T^n is a coisometry, then T is a coisometry. Thus, if T contraction and T^n unitary, then T unitary. \square

Proposition 4. Suppose T is an operator of class Q.

- (a) If T^2 is a contraction, then so is T.
- (b) If T^2 is an isometry, then T is paranormal.

Proof. Let $T \in \mathcal{B}[\mathcal{H}]$ be an operator of class \mathcal{Q} .

(a) Observe that T is of class Q if and only if

$$2(T^*T - I) \le T^{*2}T^2 - I.$$

Thus $T^{*2}T^2 \leq I$ implies $T^*T \leq I$; that is, T is a contraction whenever T^2 is.

(b) Take any x in \mathcal{H} and note that T is of class \mathcal{Q} if and only if

$$2\|Tx\|^2 \le (\|T^2x\| - \|x\|)^2 + 2\|T^2x\|\|x\|.$$

Hence $||T^2x|| = ||x||$ implies $||Tx||^2 \le ||T^2x|| ||x||$, for every $x \in \mathcal{H}$.

Therefore, if T is an operator of class $\mathcal Q$ for which T^2 is an isometry, then T is a paranormal contraction. Since $T^{*2}T^2=I$ implies $Q=2(I-T^*T)$, it follows that if T^2 is an isometry, then $T\in\mathcal Q$ if and only if T is a contraction and, in this case, T is paranormal. Note that the converses fail. For instance, the weighted unilateral shift $T=\text{shift}(2,\frac{1}{2},2,\frac{1}{2},\cdots)$ is such that T^2 coincides with the square of the "unweighted" unilateral shift. Thus T^2 is an isometry, but T is not a contraction (||T||=2), and hence $T\notin\mathcal Q$ by Proposition 4 (so that T is not paranormal — in fact, T is not even normaloid: T(T)=1).

A part of an operator is a restriction of it to an invariant subspace. An operator T is hereditarily normaloid if every part of it is normaloid, and totally hereditarily normaloid if it is hereditarily normaloid and every invertible part of it has a normaloid inverse [3]. The class of all hereditarily normaloid operators from $\mathcal{B}[\mathcal{H}]$ is denoted by \mathcal{HN} , and the class of all totally hereditarily normaloid operators from \mathcal{HN} is denoted by \mathcal{THN} . Recall that (see e.g., [4])

$$\mathcal{P} \subset \mathcal{THN} \subset \mathcal{HN} \subset \mathcal{N}$$
.

Let \mathcal{M} be any invariant subspace for T. Proposition 1 ensures that the following assertions hold true.

- (a) If $T \in \mathcal{Q} \cap \mathcal{HN}$, then $T|_{\mathcal{M}} \in \mathcal{Q} \cap \mathcal{HN}$.
- (b) If $T \in \mathcal{Q} \cap T\mathcal{HN}$ then $T|_{\mathcal{M}} \in \mathcal{Q} \cap T\mathcal{HN}$ and, if $T|_{\mathcal{M}}$ is invertible, then $(T|_{\mathcal{M}})^{-1} \in \mathcal{Q} \cap \mathcal{N}$.

Note that $T = I \oplus S$, with $S = \lambda \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ for any $\lambda \in (0, 1/\sqrt{2}]$, is a contraction in $(\mathcal{Q} \cap \mathcal{N}) \backslash \mathcal{H} \mathcal{N}$. In fact, S is not normaloid so that T is not in $\mathcal{H} \mathcal{N}$. There are two ways for an operator T to be in $\mathcal{T} \mathcal{H} \mathcal{N}$: either $T \in \mathcal{H} \mathcal{N}$ has no invertible part, or it has invertible parts and all of them have a normaloid inverse. The latter case prompts the question: are the invertible operators in $\mathcal{Q} \cap \mathcal{T} \mathcal{H} \mathcal{N}$ paranormal? More generally, is it true that, if T is an invertible normaloid operator with a normaloid inverse, then $T \in \mathcal{Q}$ implies $T \in \mathcal{P}$? (i.e., $T \in \mathcal{Q}$ implies $T \in \mathcal{Q}$ for all $T \in \mathcal{Q}$ for all $T \in \mathcal{Q}$ for all $T \in \mathcal{Q}$ implies $T \in \mathcal{P}$?

3. An Invariant Subspace Theorem for Contractions of Class Q

Take any operator T in $\mathcal{B}[\mathcal{H}]$ and set $D = I - T^*T$. Recall that T is a contraction if and only if D is nonnegative. In this case, $D^{\frac{1}{2}}$ is the defect operator of T.

Proposition 5. A contraction T lies in Q if and only if $||D^{\frac{1}{2}}Tx|| \leq ||D^{\frac{1}{2}}x||$ for every x in \mathcal{H} .

Proof. For any $T \in \mathcal{B}[\mathcal{H}]$ put $Q = T^{2*}T^2 - 2T^*T + I$ and $D = I - T^*T$. Since $Q = D - T^*DT$,

it follows that $O \leq Q$ if and only if $\langle T^*DTx; x \rangle \leq \langle Dx; x \rangle$ for every $x \in \mathcal{H}$ or, equivalently, $\|D^{\frac{1}{2}}Tx\|^2 \leq \|D^{\frac{1}{2}}x\|^2$ for every $x \in \mathcal{H}$ if T is a contraction.

If a contraction T has no nontrivial invariant subspace, then D is a proper contraction. Indeed, if T is a contraction with no nontrivial invariant subspace, then $\ker(T) = \{0\}$ so that $\|D^{\frac{1}{2}}x\|^2 = \|x\|^2 - \|Tx\|^2 < \|x\|^2$ for every nonzero x in \mathcal{H} , which means that $D^{\frac{1}{2}}$ (and so D) is a proper contraction. If, in addition, T is of class \mathcal{Q} , then more is true.

Theorem 1. If a contraction $T \in \mathcal{Q}$ has no nontrivial invariant subspace, then both T and Q are proper contractions.

Proof. Let $T \neq O$ be a contraction of class \mathcal{Q} . Since $\ker(D) = \ker(D^{\frac{1}{2}})$, it follows by Proposition 5 that $\ker(D)$ is an invariant subspace for T. Suppose T has no nontrivial invariant subspace so that either $\ker(D) = \mathcal{H}$ or $\ker(D) = \{0\}$. In the former case D = O; that is, $T^*T = I$, and so T is an isometry, which is a contradiction: isometries have nontrivial invariant subspaces. In the latter case D > O; that is, $T^*T < I$, which means that T is a proper contraction. Moreover, If T is a contraction of class \mathcal{Q} , then the nonnegative operator Q is such that the power sequence $\{Q^n\}_{n\geq 1}$ converges strongly to P (i.e., $Q^n \stackrel{s}{\longrightarrow} P$), where P is an orthogonal projection, and TP = O so that $PT^* = O$ (P is self-adjoint) [6]. If T has no nontrivial invariant subspace, then T^* has no nontrivial invariant subspace as well. Since $\ker(P)$ is a nonzero invariant subspace for T^* whenever $PT^* = O$ and $T \neq O$, it follows that $\ker(P) = \mathcal{H}$. Hence P = O, and therefore $Q^n \stackrel{s}{\longrightarrow} O$; that is, the nonnegative operator Q is strongly stable. But strong stability coincides with proper contractiveness for quasinormal operators [6]; in particular, for nonnegative operators. Thus Q also is a proper contraction.

References

- 1. T. Andô, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169-178.
- N.N. Chourasia and P.B. Ramanujan, Paranormal operators on Banach spaces, Bull. Austral. Math. Soc. 21 (1980), 161–168.
- 3. B.P. Duggal and S.V. Djordjević, Generalized Weyl's theorem for a class of operators satisfying a norm condition, Math. Proc. Royal Irish Acad., 104 (2004), 75–81 (corrigendum submitted).
- 4. B.P. Duggal, S.V. Djordjević and C.S. Kubrusly, *Hereditarily normaloid contractions*, Acta Sci. Math. (Szeged), in press.
- 5. B.P. Duggal, I.H. Jeon and C.S. Kubrusly, Contractions satisfying the absolute value property $|A|^2 \leq |A^2|$, Integral Equations Operator Theory **49** (2004), 141–148.

- B.P. Duggal, C.S. Kubrusly and N. Levan, Paranormal contractions and invariant subspaces, J. Korean Math. Soc. 40 (2003), 933–942.
- 7. T. Furuta. Invitation to Linear Operators, Taylor and Francis, London, 2001.
- V. Istrăţescu, T. Saitô and T. Yoshino, On a class of operators, Tôhoku Math. J. 18 (1966), 410–413.
- 9. C.S. Kubrusly, Hilbert Space Operators, Birkhäuser, Boston, 2003.
- 10. C.S. Kubrusly and N. Levan, *Proper contractions and invariant subspaces*, Internat. J. Math. Math. Sci. **28** (2001), 223–230.
- C. Qiu, Paranormal operators with countable spectrum are normal operators, J. Math. Res. Exposition 7 (1987), 591–594.
- 12. T. Saitô, *Hyponormal operators and related topics*, Lectures on Operator Algebras, New Orleans, 1970–1971, Lecture Notes in Math., Vol. 247, Springer, Berlin, 1972, 533–664.

5 Tudor Court, Amherst Road, London W13 8NE, England, U.K. $E\text{-}mail\ address:\ bpduggal@yahoo.co.uk}$

CATHOLIC UNIVERSITY OF RIO DE JANEIRO, 22453-900, RIO DE JANEIRO, RJ, BRAZIL

 $E ext{-}mail\ address: carlos@ele.puc-rio.br}$

UNIVERSITY OF CALIFORNIA IN LOS ANGELES, LOS ANGELES, CA 90024-1594, USA $E\text{-}mail\ address$: levan@ee.ucla.edu