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THREE DECADES OF THE LOMONOSOV INVARIANT
SUBSPACE THEOREM

C.S. KUBRUSLY

ABSTRACT. In 1973 Lomonosov presented a remarkable breakthrough on the
invariant subspace problem for compact operators: If a nonscalar operator
commutes with a nonzero compact operator, then it has a nontrivial hyperin-
variant subspace. To commemorate three decades of the Lomonosov Theorem,
we give a brief review on it, where the Lomonosov technique is discussed in
a step-by-step fashion. An extension of the Lomonosov Theorem, including
further results on invariant subspaces for hyponormal operators acting on a
Hilbert space, closes this expository paper.

1. INTRODUCTION

By an operator we mean a bounded (i.e., continuous) linear transformation of
normed space into itself, and by a subspace of normed space we mean a closed linear
manifold of it. Let B[X] denote the algebra of all operators on a normed space X.
A subspace M of X is invariant for T' € B[X] (or T-invariant) if T(M) C M. It is
nontrivial if {0} # M # X. The invariant subspace problem is: Does every operator
have a nontrivial invariant subspace? A subspace is hyperinvariant for 7" if it is in-
variant for every operator that commutes with 7T'; that is, for every operator in the
commutant {T'} = {L € B[X]: LT = TL} of T. A related open question is the
hyperinvariant subspace problem: Does every nonscalar operator have a nontrivial
hyperinvariant subspace? (An operator is scalar if it is a scalar multiple of the
identity.)

On a finite-dimensional complex normed space every operator has an eigenvalue,
and eigenspaces of nonscalar operators are nontrivial and hyperinvariant, so that
every operator on a complex finite-dimensional normed space of dimension greater
than 1 has a nontrivial invariant subspace (hyperinvariant, actually, if it is non-
scalar). On the other hand, on a nonseparable normed space every operator also
has a nontrivial invariant subspace. In fact, if T is an operator on a nonsepara-
ble normed space X, then the (closed) span of the orbit of any nonzero vector x
in X under T (i.e., \VV{T"x},>0) is a nonzero separable (spanned by a countable
set) invariant subspace for T', and hence a nontrivial invariant subspace for 7. The
invariant subspace problem trivially has a negative answer in a real space. For in-
stance, the operator (701 .
on the Euclidean real space but, of course, it has a nontrivial invariant subspace
when acting on the complez space C?). Thus the invariant subspace problem refers

) on RR? has no nontrivial invariant subspace (when acting
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to infinite-dimensional, complex and separable spaces and, from now on, all spaces
are supposed to be complex.

It is not clear exactly when the problem was originally (or formally) posed but,
according to [1], von Neumann had shown that compact operators on a Hilbert space
have nontrivial invariant subspaces back in the early thirties. In 1954, Aronszajan
and Smith [1] proved that compact operators on a Banach space have nontrivial
invariant subspaces. It is worth noticing that, according to the Fredholm Alterna-
tive (if K is a compact operator on a Banach space, then o(K)\{0} = op(K)\{0},
where o(K) and op(K) denote spectrum and point spectrum, respectively), the
significant result contained in the above paper refers to quasinilpotent compact op-
erators without eigenvalues — if a compact operator is not quasinilpotent, then it
has an eigenvalue. (An operator T is quasinilpotent if o(T) = {0} or, equivalently,
if #(T) = 0, where r(T) stands for the spectral radius of T.) A typical example
of a compact quasinilpotent operator without eigenvalues is the Volterra operator
(Kz)(s) = [; z(t)dt on L*([0,1]).

The question of the existence of nontrivial invariant subspace for polynomially
compact operators (i.e., operators T such that p(T) is compact for some nonzero
polynomial p) was publicized by Halmos in [11]. This was proved by Bernstein and
Robinson [5] in 1966 who used nonstandard analysis and, subsequently, the proof
was translated into standard analysis by Halmos in [12].

The next significant step was the remarkable breakthrough of Lomonosov [19]
in 1973, which will be the subject of the next section. Before moving on to the
Lomonosov Theorem, let us comment on two pertinent points.

The first one refers to the space upon which the operators act. The invariant
subspace problem has a negative answer in a Banach space. This remained as an
open question for a long period, but constructions of Banach space operators with-
out a nontrivial invariant subspace have been published between 1984 and 1987 by
Enflo [10] and Reed [25] (an operator on ¢! free of nontrivial invariant subspaces
was exhibited in [26]). However, such constructions are all on nonreflexive Banach
spaces; on a Hilbert space (infinite-dimensional, complex and separable), the invar-
iant subspace problem remains a recalcitrant open question.

The second point refers to classes of Hilbert space operators. Recall that an op-
erator T' on a Hilbert space H is quasinormal if it commutes with T*T, subnormal
if it is a part a normal operator (i.e., restriction of a normal operator to an invariant
subspace), hyponormal if TT* < T*T, and normaloid if 7(T") = ||T||. These classes
are related by proper inclusion (Normal C Quasinormal C Subnormal C Hyponor-
mal C Normaloid) if H is infinite-dimensional (otherwise hyponormal operators are
normal). Normal operators (on a complex Hilbert space of dimension greater than
1) have a nontrivial invariant subspace (after the Spectral Theorem), and so does
the quasinormal operators. That every subnormal operator has a nontrivial invari-
ant subspace is a deep result proved by S. Brown [6] in 1978. However, it is still
unknown whether every hyponormal operator has a nontrivial invariant subspace.
Since a hyponormal operator is normaloid, the invariant subspace is, obviously, left
open for normaloid operators as well. In fact, as pointed out in [2], p.339, ev-
ery Banach space operator without a nontrivial invariant subspace that had been
exhibited up to then, and for which the spectral radius had been computed, was
nonnormaloid. We can think of quasinilpotent operators as a class lying opposite
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to the normaloid ones. It turns out that the invariant subspace also remains unan-
swered for quasinilpotent operators on a Hilbert space (but not for quasinilpotent
operators on a nonreflexive Banach space [27]).

A classical reference for the invariant subspace problem is [23] (also see [2], [14]
and [21]). For a select collection of expository and survey papers dealing with many
aspects of the problem see e.g., [13], [22], [24], [28] and [30].

2. THE LOMONOSOV THEOREM

Compact operators (on a complex Banach space of dimension greater than 1)
have a nontrivial invariant subspace; a nontrivial hyperinvariant subspace, actually,
if it is nonscalar. The definitive result in this line is due to Lomonosov [19]: An op-
erator has a montrivial invariant subspace if it commutes with a nonscalar operator
that commutes with a nonzero compact operator. In fact, every nonscalar opera-
tor that commutes with a nonscalar compact operator (itself, in particular) has a
nontrivial hyperinvariant subspace. Recall that on an infinite-dimensional normed
space the only scalar compact operator is the null operator; on a finite-dimensional
normed space every operator is compact.

The Lomonosov Theorem is a remarkable breakthrough on the invariant subspace
problem. The full version of it, mentioned above, can be split into two parts:

(i) If an operator commutes with a nonzero compact operator, then it has a non-
trivial invariant subspace;

(ii) 4f it is nonscalar, then it has a nontrivial hyperinvariant subspace.

Part (i) is a slightly weaker version of the full statement, whose proof is known as
Hilden’s Proof of Lomonosov’s Theorem [20]. We shall sketch the proof of part one.

A Sketch of Hilden’s Proof. Take a nonzero compact operator K on a complex
Banach space X of dimension greater than 1. Let 1" be an operator on X that
commutes with K. If T" has no nontrivial invariant subspace, then the following
assertions hold.

(a) K is quasinilpotent, and hence aK is uniformly stable for all a € C.

(b) For each nonzero vector z in X’ and each nonempty open subset U of X, there
exists a nonzero polynomial p such that p(T)z € U.

Assertion (a) is a consequence of the Fredholm alternative for compact operators
and the Beurling Gelfand formula for the spectral radius (r(T) = lim,, ||T"||* for
every operator T'). Assertion (b) is readily verified by recalling that if an opera-
tor T has no nontrivial invariant subspace, then every = # 0 is a cyclic vector (i.e.,
V{T"z}n>0 = {p(T)x € X: p is a nonzero polynomial}~ = X’). Both (a) and (b)
rely on the hypothesis that 7" has no nontrivial invariant subspace. The program
is to show that this assumption, through assertions (a) and (b), leads to a con-
tradiction. Take any vector zg in X such that the origin is not in the closed ball
Bilzo] = {x € X: ||x — z0]| <1} nor in the closure of its image under K;

0 ¢ Bl [Io] and 0 ¢ K(Bl [mo])i.

Since K # O, this happens for any vector zo € X such that || K|| < ||[Kzol|. Indeed,
if 0 lies in Bi[zo], then ||zo|| < 1, and so ||[Kxzo| < ||K||. If O lies in the closure
K (Bj|zo])~ of K(Bi[zo]) (i-e., if 0 is a point of adherence of K (Bj[xo])), then there
is a sequence {x,, } in By [x¢] such that Kz, — 0, and ||Kxo| = lim,, [|K(x, — z0)]|| <
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| K| limsup,, ||zn — zo|| < ||K||. Thus take any z in X that satisfies the above
properties and, for each nonzero polynomial p, set

Up(wo) = {z € X: ||p(T)z — xo < 1}.
Assertion (b) ensures that
(¢) Up(xo) is open in X and every nonzero vector of X' lies in Uy (zo) for some p.
Since K is compact and 0 ¢ K (B[zo])~, assertion (c) implies the next one.

(d) There exists a finite set P of polynomials such that, if € K(B[zo]), then
p(T)x lies in By (xg) for some p € P.

Finally, by using (d) and recalling that 7" commutes with K, we can show that
assertion (e) below holds true.

(e) There is a sequence {pg} of polynomials in P such that, for each n >1,
pl(T) pn(T)KnZEO S Bl[l’o].

Summing up: Assertion (b) ensures the existence of a sequence {x,} of vectors
in Bi[xo] such that z, = p1(T) ... po(T)K "z for every n>1, with each p; in P,
where P is a finite set of polynomials. Put & = max,ep|p(T)||. On the other hand,
assertion (a) ensures that ||(aK)™|| — 0. Therefore,

€[l = p1(T) - pu(T) K o || < a™[[K" 2ol < |[()"[[[|zo]l — O,

and the Bj[xo]-valued sequence {z,} converges to 0. Since Bj[zg] is closed in X,
the Closed Set Theorem ensures that 0 € B;[xo]. But this contradicts the fact that
0 ¢ By[zg]. Conclusion: If an operator T commutes with a nonzero compact K,
then T has a nontrivial invariant subspace, which completes the proof of part (i)
of the Lomonosov Theorem. (|

Besides very basic functional analysis, Hilden’s Proof of Lomonosov’s Theorem
uses only two elementary results from operator theory, viz., Fredholm alternative
and Beurling—Gelfand formula. A proof of the full version of the Lomonosov The-
orem requires more than that.

First recall that the convex hull of a subset G of a linear space X, denoted
by co(G), is the intersection of all convex sets containing G; that is, co(G) is the
smallest (in the inclusion ordering) convex set that contains G. Also recall that
co(@) coincides with the set of all convex linear combinations of vectors in G; that
is, z € co(G) if and only if z = Y | o, x; for some finite set {z;}I_; of vectors in
G and some finite set of positive scalars {a;}"; such that Y., a; = 1. Clearly,
co(G)~ C co(G™)~ for every subset G of a normed space X. A classical result on
the geometry of Banach spaces is the Mazur Theorem.

Mazur Theorem. The closure of the convex hull of every compact subset of a
Banach space is compact.

That is, if C' is a compact set in a Banach space X, then so is co(C)~. In fact,
this can be readily verified by showing that co(C) is totally bounded whenever C
is (see e.g., [7], p-180).

Now we borrow the notion of compact mapping from nonlinear functional anal-
ysis. Let D be a nonempty subset of a normed space X. A mapping F': D — X
is compact if it is continuous and F'(B)~ is a compact set in X whenever B is
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a bounded subset of D. Recall that a continuous image of any compact set is a
compact set. Thus, if D is a compact subset of X, then every continuous mapping
F: D — X is compact. We shall, however, be concerned with the case where D (the
domain of F) is not compact but is bounded. In this case, if F' is continuous and
F (D)~ is a compact set, then F' is a compact mapping (because F(B)~ C F(D)~
whenever B C D). The central result required for proving the full version of the
Lomonosov Theorem is the Schauder Fixed Point Theorem (see e.g., [7], p.150),
which reads as follows.

Schauder Fixed Point Theorem. Let D be a closed, bounded and convex subset
of a normed space X, and let F: D — X be a compact mapping. If D is F-
invariant, then F has a fized point (i.e., if F(D) C D, then there exists © € D
such that F(z) = x).

Next take the algebra B[X] of all operators on a normed space X and let A
be a unital subalgebra of B[X], which means that A is a linear manifold of B[X]
that contains the identity and is such that AB lies in A whenever A and B lie in
A. A subspace M of X is invariant for A (or is A-invariant) if it is invariant for
every operator in A (i.e., if A(M) C M for every A € A). We say that A has no
nontrivial invariant subspace if there is no nontrivial subspace of X' that is invariant
for every operator in 4. An intermediate stage towards a proof of the full version
of the Lomonosov Theorem is the so-called Lomonosov Lemma.

Lomonosov Lemma. Let K be a nonzero compact operator on a complexr Banach
space X and let A be a unital subalgebra of B[X]. If there is no nontrivial invariant
subspace of X that is invariant for every operator in A, then there exists L in A

such that 1 is an eigenvalue of LK (i.e., such that ker(I — LK) # {0}).

Below we sketch a step by step proof for the Lomonosov Lemma. The first
steps actually prepare the ground for an application of the Schauder Fixed Point
Theorem.

Proof of the Lomonosov Lemma. Let X be a complex Banach space and let
A be a unital subalgebra of B[X] that has no nontrivial invariant subspace. In this
case we can show that the following assertion holds.

(a) For each nonzero vector z in X’ and each nonempty open subset U of X there
exists an operator A in A such that Az € U.

Let K be a nonzero compact operator on X. Take xg € X as in the previous proof
so that 0 ¢ Bj[xo] and 0 ¢ K (B[zo])~. For each operator A in A set

Ua(zo) = {w € X: ||Az — mo]| < 1}.
Assertion (a) ensures that

(b) Ua(zo) is open in X and every nonzero vector of X lies in Uy (zg) for some
operator A in A.

Since K is compact and 0 ¢ K (Bj[zo])~, assertion (b) implies the next one.

(c) There exists a finite subset F of A such that, if z € K(B[zo]), then Az lies
in By(xo) for some A € F.

For each A in F consider the function a4 : K(Bi[zg]) — R given by
as(zr) =max{0,1 — ||Az — zo||} for every x € K(Bi[xo]).
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Take an arbitrary x € K (Bj[zo]). Assertion (c) ensures that there exists A in F
such that ||[Az — xo|| < 1, and hence 0 < a4 (z) for some A in F. Therefore, since
0 < aa(z) for every x € K(Bi[xo]) and each A € F, we get 0 < >_ 4. raa(z) < o0
for every = € K(Bi[zo]). Put

aa(z)
Ba(@) = =————
2 aer @a()
which defines a function S4: K(Bi[zo]) — R. Now let F': By[zg] — X be a map-
ping defined by

F(z) = Z Ba(Kz)AKz for every x € B[z
AeF

for each x € K(Bi[zo]),

It is readily verified that F' is continuous. Using the Mazur Theorem we can show
that F(Bi[xo])” is compact. Therefore,

(d) F is a compact mapping.
Moreover, it is also easy to show that F(Bi[zo]) C Bi[zo]. That is,

(e) F' is Bj[xo]-invariant.
Recall that 0 ¢ Bj[zo] and apply the Schauder Fixed Point Theorem to conclude
that there exists x in By[zo] and L =) ,.» B4(Kx)A in A such that

(f)y LKz =F(x)=x2#0 (ie., ker(I — LK) # {0}). O

The proof of part (i) of the Lomonosov Theorem uses only elementary results of
operator theory. In order to prove part (ii), thus completing the full version of it,
the Lomonosov Lemma is called forth. The full version of the Lomonosov Theorem
can be rephrased as follows.

Lomonosov Theorem. If a nonscalar operator commutes with a nonzero compact
operator, then it has a nontrivial hyperinvariant subspace.

Take an operator T on a complex Banach space X. Let {T'}' be the commutant
of T, which is the unital subalgebra of B[X] consisting of all operators in B[X]
that commute with T. Recall that a nontrivial hyperinvariant subspace for T is a
nontrivial subspace of X that is invariant for every operator in {T'}'.

Proof of the Lomonosov Theorem. Let T be an operator acting on a complex
Banach space X. Suppose there exists a nonzero compact operator K in {T}',
and suppose T has no nontrivial hyperinvariant subspace. Setting A = {T}’, the
following assertion holds as a consequence of the Lomonosov Lemma.

(a) There exists an operator L in {T'} such that ker(I — LK) is nonzero and
T-invariant.

Using the above result it can be shown that
(b) T has an eigenvalue (i.e., there is a A € C such that ker(A\I —T') # {0}).

But ker(AI —T) is a hyperinvariant subspace for T. Therefore, if T has no nontrivial
hyperinvariant subspace, then ker(AI — T') = X. Equivalently, T = AI; that is, T
is scalar. Summing up: If an operator T has no nontrivial hyperinvariant subspace
and commutes with a nonzero compact K, then T must be scalar. O

For detailed proofs of each assertion in this section the reader is referred to [7]
(Section VI.4), [18] (Chapter 12), [21] (Chapter 7), or [22].
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3. AN EXTENSION OF THE LOMONOSOV THEOREM

Recall that rank means dimension of range. Thus 7' commutes with K if and
only if rank (KT — TK) = 0. For simplicity, throughout this section all operators
are assumed to act on a Hilbert space.

Proposition 1. Let T, S and K be operators acting on a complex Hilbert space.

(a) If 0 < dim(kerS) < oo, 0 < dim(ker S*) < 0o and rank (TS —ST) =1, then
op(T)Uop(T*) # &, and therefore

(b) if K is compact and rank (KT —TK) =1, then T has a nontrivial hyperin-
variant subspace.

If rank (KT —TK) = 1), then K is nonzero and T is nonscalar. Thus, combining
the Lomonosov Theorem with the above proposition yields the following useful
extension of the Lomonosov Theorem.

Extension of the Lomonosov Theorem. If a nonscalar operator T is such
that rank (KT — TK) < 1 for some nonzero compact operator K, then T has a
nontrivial hyperinvariant subspace.

The above results were stated in a Hilbert space setting — for a proof see [18]
(Chapter 12). Let us just mention that they hold in a Banach space setting as well.
Their proofs in a Banach space X are based on the quotient space X /ran (S)~
rather than on the orthogonal complement H © ran ()~ = ran (S)+ = ker(S*) in
a Hilbert space H (see [9], [15] and [16]).

It is worth noticing that if one could improve the Extension of the Lomonosov
Theorem by replacing rank (K7 — TK) < 1 with rank (KT — TK) < 2, then one
would have solved affirmatively the hyperinvariant subspace problem. Indeed, for
every operator T there exists a nonzero compact K such that rank (KT —TK) < 2
(reason: this always holds whenever K is a rank-1 operator).

Let ‘H be a complex Hilbert space of dimension greater than 1. Recall that an
operator T' on H essentially normal if it has a compact self-commutator (i.e., if
Dy =T*T —TT* is compact). It is called quasireducible if there exists a nonscalar
operator L in {T'} such that rank (DyL — LD7) < 1. Every quasinormal operator
is quasireducible, but there exist subnormal (thus hyponormal) operators that are
not quasireducible. The next result is a corollary of the above extension of the
Lomonosov Theorem [17].

Proposition 2. Fvery essentially normal quasireducible operator has a nontrivial
invariant subspace.

An important result on hyponormal operators is the Berger—Shaw Theorem [3],
[4] (also see [8], p.152). A consequence of it is that if a hyponormal operator has
no nontrivial invariant subspace, then its self-commutator Dr is compact (trace-
class, actually). That is, if there exists a hyponormal operator without a nontrivial
invariant subspace, then it is essentially normal. Combining this with the above
proposition, it follows that the invariant subspace problem for hyponormal opera-
tors is restricted to the class of nonquasireducible hyponormal operators [17].

Proposition 3. Quasireducible hyponormal operators have a nontrivial invariant
subspace.
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Remark. The fact that a nonquasireducible subnormal operator has a nontrivial in-
variant subspace is a trivial corollary of the S. Brown Theorem (every subnormal
operator has a nontrivial invariant subspace — recall that there exist nonquasi-

re:

ducible subnormal operators). However, an independent proof of the above itali-

cized result would lead to a new proof for the S. Brown Theorem (via Proposition

3)

, which would be a consequence of the Lomonosov and Berger-Shaw Theorems.

We have touched in one type of extension of the Lomonosov Theorem (based on

[9], [15] and [16]). For further results considering extensions in various directions,
the reader is referred to [21], [22], [29], [31] and the references therein.
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