Acta Scientiarum Mathematicarum (Szeged) 71 (2005) 337-352

HEREDITARILY NORMALOID CONTRACTIONS

B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

ABSTRACT. A Hilbert space operator T' € B[H] is said to be totally hereditarily
normaloid, or THN, if for every T-invariant subspace M C H the restriction
T|am of T to M is normaloid and, whenever T|q € B[M] is invertible, the
inverse (T|a¢)~ ! is normaloid as well. In this paper we explore the structure
of THN contractions, and conclude some properties which follow from such
a structure, specially for 7HAN contractions with either compact or Hilbert—
Schmidt defect operators.

1. INTRODUCTION

Let H be a (complex nonzero) Hilbert space. By a subspace of H we mean a closed
linear manifold of H (which is again a Hilbert space), and by an operator on H we
mean a bounded linear transformation of H into itself. Let B[H] be the algebra of
all operators on H. A subspace M of H is invariant for T' € B[H] if T(M) C M.
A part of an operator T' € B[H] is a restriction T|p € B[M] of it to an invariant
subspace M. Recall that an operator T is a contraction if | T]| < 1, a strict contrac-
tion if |T'|| < 1, power bounded if sup,, ||T™|| < oo, normaloid if the spectral radius
r(T) coincides with the norm ||T||, and invertible if it has a bounded inverse. Let
D denote the open unit disc, D~ the closed unit disc, and 0D the unit circle.

Definition 1. An operator is hereditarily normaloid if every part of it is normaloid.
Let HN denote the class of all hereditarily normaloid operators from B[H]. An
operator is totally hereditarily normaloid if every part of it is normaloid and every
invertible part of it has a normaloid inverse. Let 7HA denote the class of all totally
hereditarily normaloid operators from B[H].

The classes HN and 7HN were introduced in [5] where it was proved that, if
T € THN, then Weyl’s theorem holds for both T and its adjoint T*. (Recall that,
according to usual terminology, Weyl’s theorem is said to hold for an operator T’
if 0(T)\ow(T) = moo(T), where o(T') is the spectrum of T, o,,(T) is the set of all
A € C for which (AI — T) is not Fredholm of index zero, and moo(T") is the set of all
isolated eigenvalues of T of finite multiplicity.) Observe that 7HN is closed under
nonzero scaling (aT € THN for every a # 0 whenever T'€ THN), and hence it is
sufficient to investigate contractions in 7HN . It is also worth noticing that if T is
in 7HN then so is every part T'|a of it.

This paper considers contractions 7" in 7HAN . Cq;-contractions, and those with
defect operator Dy = (I — T*T)? either compact or Hilbert-Schmidt, are consid-
ered in Propositions 5 to 11. The main result shows that if Dp is Hilbert—Schmidt
and normal subspaces of T (i.e., subspaces M such that T'|p¢ is normal) reduce
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T, then T is the direct sum of a unitary operator, a normal Cy-contraction and a
Cio-contraction (with no invertible parts). Moreover, still under the assumptions
that the defect operator Dy is Hilbert—Schmidt and normal subspaces of T' reduce
T, we also show that (a) if 7' has no normal direct summand, then T is reflexive,
and (b) if dim(ker(A —T™)) # 0 for every A in H C D with ), (1 — |A]) = oo,
then 7" has the bicommutant property.

THN is quite a large class. For instance, recall that an operator T' € B[H] is
quasinormal if it commutes with T*7T', subnormal if it is a part of a normal operator,
hyponormal if TT* < T*T, and paranormal if | Tz||? < | T2z ||z|| for every = € H.
These are related by proper inclusion (Normal C Quasinormal C Subnormal C
Hyponormal C Paranormal) if H is infinite-dimensional (otherwise they all coin-
cide with the class of normal operators). The classes THN and HA lie properly
between the paranormal and normaloid operators:

Paranormal ¢ 7THN C HN C Normaloid.

Indeed, paranormal operators are normaloid, a part of a paranormal is again para-
normal, and so is the inverse of any invertible paranormal. (See [11] for a detailed
discussion of theses classes.) In this introductory section we shall pose a few basic
properties that will be required in the sequel and will help to situate the classes
THN and HN in their due place.

Remark 1. The above inclusions are, in fact, proper inclusions. For instance, the
direct sum T = S & @ of a normaloid nonstrict contraction S (r(S) = ||S|| = 1)
with a quasinilpotent nonzero contraction @ (r(Q) =0 # ||Q| < 1) is a normaloid
nonstrict contraction (r(T) = ||T|| = 1) but is not in HA (because @ is not norma-
loid). Sample: T'=1® ((1) 8) s a mormaloid not in HN'. Examples of operators
in HAN but not in 7HN, and also of operators in 7HN that are not paranormal
will come out below in Remarks 3 and 5 with the help of Propositions 1 and 4.

For any contraction T' € B[H] the sequence of nonnegative numbers {||7"x||} is
decreasing (thus convergent) for every = € H. A contraction T is of class Co. if it is
strongly stable; that is, if {||T™z||} converges to zero for every = € H, and of class
Cy. if {||T™z||} does not converge to zero for every nonzero x € H. It is of class C.g
or of class C.1 if its adjoint T is of class Cg. or C;., respectively. All combinations
are possible, leading to classes Cqog, Co1, C10 and C11. An operator T is uniformly
stable if {||T™||} converges to zero. Recall that T is uniformly stable if and only if
r(T) < 1, and uniform stability for T trivially implies T' € Cqo.

Proposition 1. Every Ci.-contraction is a nonstrict contraction in HN .

Proof. Every nonzero part of a Cj.-contraction is again a C;.-contraction (reason:
if M # {0} is T-invariant, then a trivial induction ensures that (T'|p)"u = T"u
for all u € M and every n>1). Now recall that every contraction not in class Coo
s normaloid and nonstrict. Indeed, if a contraction T is not in Cqg, then it is not
uniformly stable so that r(T) > 1. Therefore, 1 < r(T) < ||T|| < 1. O

Remark 2. Every isometry lies in 7HN since isometries are quasinormal. However,
in light of the above proposition, it is worth noticing that an isometry is a particular
case of Ci.-contraction in 7HAN; and this happens because completely nonunitary
isometries have no invertible parts. Indeed, a part of an isometry is again an
isometry, and an invertible isometry is precisely a unitary operator. Therefore,
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if an isometry is completely nonunitary (i.e., has no unitary direct summand),
then it is a unilateral shift (after the von Neumann-Wold decomposition), which
is not invertible. This exhibits a Cip-contraction in 7HN: a unilateral shift is
a Cyp-contraction such that every part of it is again a unilateral shift (which are
noninvertible isometries), and so it has no invertible part; thus lying in 7HN .

Remark 3. Now consider the unilateral weighted shift 7' = shift({wj}7 ;) on £}
with weights wy, =1 for all k except for k =2 where wy = w for any w € (0,1).
Since the nonnegative weight sequence is not increasing, 7" is not hyponormal, and
hence not paranormal (recall that the concepts of hyponormality and paranormality
coincide for unilateral weighted shifts; see e.g., [11, p.95]). It is readily verified that
T is a normaloid nonstrict contraction (reason: ||T™|| = 1 for all n > 1, which implies
r(T) = 1 by the Gelfand-Beurling formula), and also that it is of class C1o. Indeed,
it is of class Cy. because ||T"z|| = ||T?z|| for every = € {2 and kerT™ = {0} for
all n>2, and of class C.g because | T*"z| < ||S*"z| for every z € {? and each
n>1, where S is the “unweighted” unilateral shift. Thus T" € HN by Proposition
1. If there exists an invertible part of T', say T'|aq for some T-invariant subspace
M # {0}, then T™(T|pm) "u = u for every u € M (reason: (T|r) "u lies in M
and (T|m)"y = T™y whenever y € M), and hence M C ranT" for every n>1,
which implies M = {0}; a contradiction. Therefore, all parts of T" are noninvertible.
Consequently, T is a nonparanormal Cig-contraction in THN .

If T € C.q, then T* € C;. and so T* € HN by Proposition 1. Thus, if T € C11,
then both T and T* lie in HN . Clearly, every unitary operator is a C1-contraction
in THN . Are they the only C;ii-contractions in 7HN ?

2. THN CONTRACTIONS OF Crass Ci;

Let p(T) = {X € C: ker(A —T) = {0} and ran (Al —T) = H} be the resolvent
set of an operator T on H. Consider the classical partition {op(T),or(T),00(T)}
of the spectrum o(T) = C\p(T), where op(T) = {A € C: ker(A —T) # {0}}
(the set of all eigenvalues of T') is the point spectrum, og(T) = op(T*)*\op(T)
is the residual spectrum, and oc(T") = o(T)\(op(T) U op(T*)*) is the continuous
spectrum. (We are using the standard notation A*:= {\ € C: X € A}.) The joint
point spectrum oyp(T) = {A € C: {0} # ker(AI —T) C ker(X —T*)} is a subset
of op(T). The elements of o;p(T") are the normal eigenvalues of T It is clear that
if op(T) = 05p(T), then op(T) C op(T™*)*, and hence or(T*) is empty; this is the
case whenever T is a hyponormal operator: (a) every eigenvalue of a hyponormal
operator is a normal eigenvalue. Moreover, as is also well-known, (b) isolated points
in the spectrum of a hyponormal operator are eigenvalues. However, the above itali-
cized statements can be extended to operators in 7HN only partially, as we shall
see in Proposition 3 below. To prove Proposition 3 we need the following result,
which will be applied often throughout the text.

Proposition 2. (a) If T € THN is such that o(T) C 0D, then T is unitary. (b)
In particular, if T € THN is similar to a unitary operator, then it is unitary.

Proof. Take an invertible operator S € B[H]. Recall that S is unitary if and only if
IS =1IS~"| = 1. Indeed, if ||S|| = |S7*|| = 1, then [|z]| = [|S~'Sz|| < ||Sz|| < |||l,
and hence [|Sz| = ||z|| for every x € H (thus an invertible isometry, which means
a unitary operator). If o(T) C 9D, then T is invertible and o(T~1) C 9D so that



4 B.P. DUGGAL, S.V. DJORDJEVIC, AND C.S. KUBRUSLY

r(T) =r(T~1) = 1. If an invertible T lies in 7HN/, then T' and T~! are normaloid.
Thus, if T € THN and o(T) C 9D, then ||T|| = [T~ = 1, and T is unitary. This
proves (a). If T is similar to a unitary operator U, then o(T") = o(U) C 9D so that
T is unitary by item (a) if, in addition, T' € THN. a

Proposition 3. (a) If T € THN, then isolated points of o(T) are eigenvalues of
T. (b) Furthermore, if T € THN and o(T) is finite, then T is a diagonal operator.

Proof. If X is an isolated point of ¢(T"), then it follows by the Riesz Decomposition
Theorem that H has a direct sum (not necessarily orthogonal) decomposition H =
H1 + Hz into T-invariant subspaces Hy and Ha such that o(T1) = {A} and o(T3) =
a(T)\{\}, where Ty = T|y, and Ty = T|y,. Since T € THN we get Ty € THN.
Therefore, if A =0, then 7} = O and X is an eigenvalue of T. If X # 0, then put
U = +Ti so that U € THN and o(U) = {1}. Proposition 2 ensures that U is uni-
tary, and hence U — I is quasinilpotent and normal so that U = I. Thus T} = \I.
(i.e., A is a simple pole of the resolvent of T') and H = ker(Al — T') + Hz, which
implies Hy = ran (A — T), and so H = ker(Al —T) 4 ran (A — T'). This proves
(a): isolated points in o(T) are eigenvalues. To complete the proof, assume now
that o(T) is finite (equivalently, o(7") consists of isolated points only). Then the
points A € o(T') are simple poles of the resolvent of T. For any operator S € B[H]
let 0,(S) ={A € a(S): |A\| =r(S)} denote the peripheral spectrum of S [6, p.225],
which is nonempty. Let Py, denote the Riesz projection corresponding to A; in
0x(T). Then Py, has norm 1, and ker(A;I — T) is orthogonal (in the usual Hilbert
space sense) to ran (A I —T') (see [6, Proposition 54.4]). (We remark here that
the G. Birkhoff definition of orthogonality used in [6, Proposition 54.4] reduces to
orthogonality in the usual sense for Hilbert spaces.) Thus )\ is a normal eigenvalue
of T. Repeating this process a finite number of times, starting with T'|yan (x,7-7)
in THN, it follows that T is a diagonal operator.

Remark 4. An operator is isoloid if isolated points of the spectrum are eigenvalues.
Proposition 3(a) says that THN operators are isoloid. However, it happens that

even nonzero isolated points of the spectrum of a THN operator
(which are eigenvalues) are not necessarily normal eigenvalues.

For instance, let S be the canonical unilateral shift on ¢ and put A = (I + 9),
which is a subnormal operator. Hence A € THN. It is clear that o(A) = (1 + D7)
and A* is not an isometry, and so Dy. = (I — AA*)2 # O. Take any A € D\o(A)
and any u € £\ ker D4+ such that 2||ul|* + [A|* < 1. Consider the operator 7' =
(g g) on the orthogonal direct sum H = Kf @ C, where B=v® 1 (i.e., B{ = (v
for every ¢ € C) with v = D2.u= (I — AA*)u # 0 and C = X\. We claim that

A is a nonzero isolated nonnormal eigenvalue of 7.

Indeed, A # 0 because A € D\o(A), and it is an eigenvalue of T since T'(zo ® 1) =
A(xo @ 1) if and only if Az + v = Ao, which happens for zg = (A — A)~!v. Since
H = + C(zo & 1), we have o(T) = o(A) U{A}. Thus X is an isolated point of
o(T). Moreover, since xg # 0, it follows that ker(Al —T) = C(zo @ 1) is not or-
thogonal to ¢2 = ran (A —T). Then ker(AI —T*) Nker(AI —T) = {0}, and so
ker(A — T') does not reduce T. Now, using an argument from [2], we verify that

1T = 1.
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Actually, |T|| > ||A|| = r(4) = 1. On the other hand, for any z & ¢ in (2 & C,

IT(z & ONI* = II(Az + Cv) ® AC|I* = [[ Az + Col|* + [AP[¢[?
[Az][* + 2[¢T (A s v)| + [ lol]* + IA[¢ [

[Az? + 2I¢I {AD Rz s w)] + [ lull + AP
1Az + 2I¢] el 1Dzl + [ [[ull® + [AP[¢]?
[Az|? + [|Daz® + 2[¢]?[[ul® + [AI?|C]”

[Az|? + | Daz® + [¢]* = [l2® + [¢[* = [l & ¢JI*.

(VAN VAN VAN VAN VA

Finally, we show that T'€ THN. In fact, since o(T) = o(4) U{A} and ||T|| = 1,
it follows that 7" is a noninvertible normaloid operator. Every nonzero T-invariant
subspace is of the form M + N, where the subspaces M and N are invariant for
A =Ty, and Ty, , respectively, with Hy = ¢? and Hy = C(zo ® 1). Here we are
applying the Riesz Decomposition Theorem again: H has a unique direct sum de-
composition H = Hy + H; into T-invariant (not necessarily orthogonal) subspaces
Hy and Hy with o(T|n,) = {A\} and 0(T|n,) = o(T)\{\}. Furthermore, the two
projections determined by this decomposition are norm-limits of polynomials of T
by Runge’s Theorem. If M # {0}, then T'|rqinr = A|am + Al is noninvertible and
normaloid, where I denotes the identity on . If M = {0}, then T|pin = Al is
normaloid with a normaloid inverse. Outcome: T lies in THN.

We shall focus our attention on Ci.-contractions in 7HN; in particular, on Ci1-
contractions in 7HAN . These will be fully characterized in Propositions 5 and 6.

Proposition 4. Let S be an invertible part of a Cy.-contraction in THN . If S™!
is power bounded, then S is unitary.

Proof. Take a C;.-contraction T in 7HAN . Let S be a nonzero part of T. Thus
S is a Cj.-contraction and so ||S]| =1 (cf. proof of Proposition 1). Now suppose
S is invertible. Since T' € THN, it follows that S~! is normaloid, and therefore
IS =1=|S~1S| < ||S7Y| =r(S~1). If S~! is power bounded, then r(S~1) <1
so that ||S| = ||S~!|| = 1, and S is unitary (cf. proof of Proposition 2). |

The above proposition shows which are the natural candidates to be in HN but
not in 7HN (recall: although Cq; is precisely the class of all contractions quasi-
similar to a unitary operator [13, pp.71,75], a Cyi-contraction is not necessarily
similar to a unitary operator).

Corollary 1. If a nonunitary Ci1-contraction is similar to a unitary operator, then

it lies in HN \THN.

Proof. If an operator is similar to a unitary operator, then it is invertible with a
power bounded inverse, and the result follows by Propositions 1 and 4. O

A complete spectral characterization of Cy.-contractions is known. Let I'(D) be
the collection of all nonempty compact subsets K of D~ such that every nonempty
clopen (closed and open) subset C of K is such that u(C'NOD) > 0, where p stands
for the normalized Lebesgue measure on 9D. It was shown in [3] that the spectrum
of a completely nonunitary C;.-contraction lies in I'(ID) and every set in I'(D) can be
the spectrum of a Cq;-contraction, and in [8] that every set in I'(ID) can also be the
spectrum of a Cyp-contraction. Recall that a completely nonunitary C;-contraction
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is quasisimilar to an absolutely continuous unitary operator [13, pp.71,75,84,85],
and an absolutely continuous unitary operator is similar to a completely nonunitary
Ci1-contraction [7] (see also [2]). However, in accordance with the aforementioned
results, the point zero may be in the spectrum of a Cq;-contraction (in fact, if it is
there, then it is in the continuous spectrum). We give a concrete example.

Remark 5. Take an arbitrary integer n>1 and let T,, = shift({ws}3>_.,) be a
bilateral weighted shift on ¢? with weights wy = 1 for all k except for k = 0 where
wo = (n+1)71. Bach T, is a nonunitary Cj;-contraction similar to a unitary
operator, and T' = @?:1 T, is a C11-contraction not similar to any unitary operator
[10, p.65] such that 0 € o(T) (T is injective but not bounded below). First note
that T, lies in HN' \THN (by Corollary 1), and hence the Ci;-contraction T
does not lie in 7HAN (each direct summand T}, is invertible with a power bounded
inverse, but not unitary — Proposition 4). This again prompts the question: If a
Ci1-contraction T lies in 7HN, then is it true that 7" must be unitary?

Proposition 5. If T € C11 NTHN, then T is unitary.

Proof. If T is a Cqi-contraction, then it is quasisimilar to a unitary operator. In
this case, it follows from [1] that there exists an increasing sequence {M,, }nen of
T-invariant subspaces that span H (i.e., \/,,cy My = H) such that each part T'| a4,
is similar to a unitary operator. If, in addition, T" € THN, then each T|p4, lies in
THN, and hence is unitary by Proposition 2. Therefore, T' is unitary. O

Proposition 6. If T € THN is a Cy.-contraction, then T is the (orthogonal)
direct sum of a unitary operator and a Cyg-contraction.

Proof. Every Cq.-contraction T has a triangulation

T11 * *
T = O TOO *
0 O Ty

where 17, € Cu, Too € Coo and T € Cqg [13, p75] Since T11 € CH, it follows
that T1; € C11 NTHN (it is a Cy1-part of a THN contraction), and hence T is
unitary by Proposition 5. Recall that if the restriction of a contraction 7' to an
invariant subspace is unitary, then the subspace reduces T'. Therefore,

Tt *
TTll@(BO T10>

so that Ty is a part of T. Since T' € C;., it follows that Ty acts on {0}, and hence

T =Ty ® Tho. 0

3. THN CoNTRACTIONS WITH COMPACT DEFECT OPERATOR

Recall that T is a contraction if and only if I — 77T is a nonnegative contraction.
In this case, the nonnegative contraction Dy = (I — T*T)% is called the defect
operator of T. The characterization of Cq;-contractions in 7HAN is complete by
Proposition 5: a contraction lies in C11 N THN if and only if it is unitary. In
order to deal with the cases of Cig or Cpi-contractions in 7HN we shall assume
that their defect operator is compact.
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Proposition 7. If a Cy.-contraction T € B[H] has a compact defect operator, then
o(T)ND # @& if and only if D C op(T*).

Proof. Let Dt be the defect operator of a contraction T. We claim that

if T € Cq. and Dt is compact, then T' is bounded below.

If Dy is compact, then so is D% so that I — T*T is compact, and hence zero is
the only possible accumulation point of o(I — T*T'), which implies that zero is not
an accumulation point of o(T*T). Therefore, if 0 ¢ op(T*T) (i.e., if 0 # [|T*Tx||
for every nonzero x), then T*T is bounded below and so is T' (since | T*Tz| <
|T*|| | Tx| for every x). Butif T € Cy., then 0 ¢ op(T*T'). (Indeed, if 0 € op(T*T),
then ker T' = ker(T*T) # {0}, which implies that 7"z = 0 for some 0 # x € ker T’
and every positive integer n, and hence T ¢ C;..)

Now take any A € ) and consider the Mobius transform Ty = (Al — T)(A\T — I)~' =
(AT — I)~'(\I — T), which is a C;.-contraction with a compact defect operator [13,
p-240], and hence bounded below by the above result. Thus (A — T') is bounded
below (since ||Txz|| < [[(ANT — I)~'||||(M — T)z|| for every z), which means that A
is not in the approximate point spectrum; that is,

]D)ﬂO'Ap(T) = (.

C o4p(T). Then

Therefore, o4p(T) = 0o (T) C 9D because o(T) C D~ and do(T)
) C op(T*)* so that

o(T\oap(T) =D if o(T)ND # &. But o(T)\oap(T) C or(T
o(T)ND#@ implies D Cop(TF).
The converse is trivial. O

A straightforward corollary reads as follows. If a C;.-contraction T has a com-
pact defect operator and D € op(T*), then o(T) C OD. By using Proposition 7
we can extend the result of Remark 2 on completely nonunitary isometries (i.e.,
on unilateral shifts, and hence on Cjg-contractions with null defect operator) to
Cio-contractions with compact defect operators.

Proposition 8. If T is a Cig-contraction with a compact defect operator, then it
lies in THN if and only if it has no invertible part.

Proof. We shall show that the following assertions are pairwise equivalent.
(a) Every nonzero part of T is not invertible.
(b) D C op((T)m)*) whenever M is a nonzero T-invariant subspace.
(¢) T € THN.

Suppose T is a Cyg-contraction with a compact defect operator, let M be an ar-
bitrary nonzero T-invariant subspace, and consider the part T|xr¢. First observe
that T|a is a Cy.-contraction with a compact defect operator. Thus, if T|s is
not invertible, then 0 € o(T|p) so that o(T|am) ND # &, and hence Proposition
7 ensures that D C op((T'|am)*); that is, (a) implies (b). Now if D C op((T'|m)*),
then 0 € op((T|m)*) so that 0 € o(T| ), which ensures that T'|a¢ is not invert-
ible so that (b) implies (a), and (a) implies (c) trivially (because T' € HA ac-
cording to Proposition 1). Finally, if T'|s is invertible, then 0 ¢ o(T|a¢) so that
0¢ op((T|m)*), and hence D € op((T)|Mm)*), which implies that o(T|r¢) C 0D by
Proposition 7 (because T'|rq is a Cq.-contraction with a compact defect operator),
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and therefore T'| o is unitary according to Proposition 2 whenever T|y € THN,
that is, whenever T' € THAN . Summing up: T|p¢ invertible and T € THN leads
to T'|aq is unitary, which is a contradiction. In fact, if 7|4 is unitary, then M re-
duces T (if a part of a contraction is unitary, then it is a direct summand) so that
T*| m is unitary, which contradicts the fact that T' € C19. Thus (c) implies (a). O

An immediate consequence of Propositions 6 and 8 reads as follows. A C;.-con-
traction in THN with a compact defect operator is the (orthogonal) direct sum of
a unitary operator and a Cig-contraction with no invertible parts.

On the other hand, there is no way for a Cp;-contraction T' (acting on a nonzero
Hilbert space H) to be in 7HAN, provided it has a compact defect operator Dy and
ker T C ker T*. (Observe that ker T' C ker T* for a C;.-contraction.)

Proposition 9. If T is a Co1-contraction with a compact defect operator such that
ker T' C ker T*, then it is not in THN .

Proof. Since TDyp = Dp-T [13, p.7] and (ranT)~ = H # {0} (for T' € Co; so that
ker T* = {0}), it can be shown by using the polar decomposition of T* that Dy
is compact whenever Dt is. Moreover, T* € Cq¢ implies op(T*)ND = &. The
hypothesis ker T' C ker T* implies that either T is injective or 0 is a normal eigen-
value of T' (which cannot occur once T € Cp1), and hence D € op(T'). Thus, the fact
that T™* is a Cq.-contraction with a compact defect operator implies, by Proposition
7, that o(T*) C 9D, and so o(T) C D. Therefore, T is unitary by Proposition 2
whenever T' € THN, which contradicts the hypothesis that T € Cg;. O

If T is a Cgp-contraction with compact defect operator, then T is a semi-Fredholm
operator with a finite-dimensional kernel. The operator 7" may or may not have
Fredholm index 0. If, however ind T = 0, then T is a compact perturbation of a
unitary operator, which implies that its essential spectrum o.(T) is a subset of 9D.
It follows that o(T)ND = op(T) N D.

Proposition 10. Let T be a Cog-contraction with a compact defect operator such
that indT = 0. If T € THN and normal subspaces of T reduce T, then T is a
diagonal operator, the eigenvalues of T are of finite multiplicity, and op(T) has no
accumulation point in 1.

Proof. Let T be a Coo-contraction in 7HN with a compact defect operator and
with indT =0. Then o(T)ND = op(T)ND. For any A € op(T) C D it follows
that Ny = ker(A — T) is a normal subspace of T. Hence N reduces T, and so
do the subspaces Ho = @y, (1) N and Hi = H S Ho. Since o(T|y,) C ID, it
follows that the Coo-contraction T'|y, is unitary, thus acting on H; = {0}. Hence T
is a diagonal operator. Since the defect operator D is compact, the eigenvalues of
T are of finite multiplicity and op(T") has no accumulation point in D. O

Remark 6. There exist Cgg-contractions T in 7HAN such that Dt is compact but
indT # 0. For example, consider a unilateral weighted shift T' = shift({wg}72 )
on Kf with increasing weights wy = kLH Then 0 < wp — 1, [[,we =0, indT #0
and Dp belongs to the Schatten p-class for all 2 < p < co. Furthermore, T is a Cgo-
contraction, which being hyponormal is in 7HN . If, however, the defect operator
Dr of a Cgp-contraction in 7HN is of Hilbert-Schmidt class (i.e., of Schatten 2-
class), then ind 7' = 0 whenever normal subspaces of T' are reducing, as we shall see
in the next section.



HEREDITARILY NORMALOID CONTRACTIONS 9

4. THN CONTRACTIONS WITH HILBERT-SCHMIDT DEFECT OPERATOR

An operator D € B[H] is Hilbert-Schmidt if {||Del||?}ccp is a summable family for
any orthonormal basis B for H. This sum does not depend on the choice of the
orthonormal basis. For simplicity we shall assume from now on that H is separable.
Let B = {e,} be any orthonormal basis for H. Thus the defect operator Dy of
a contraction 7' € B[H] is Hilbert-Schmidt if >°  ||Dre,||* < co or, equivalently, if
>, (1= |Te,||?) < co. This is the trace of D7; that is, tr(D%) = > (D3e,;e,) =
>, IDren||? < oo (Dr is Hilbert-Schmidt if and only if D7 is trace class).

Recall that a Cgg-contraction T is of class Cq if there exists an inner function

such that u(T) = 0. A contraction T is a weak contraction if o(T) # D~ and D%
is trace class [13, p.323]. Equivalently, o(T") # D~ and Dy is Hilbert—Schmidt.

Proposition 11. If T € THN is a Cq.-contraction with a Hilbert-Schmidt defect
operator Dt such that normal subspaces of T reduce T, then T is a diagonal Cq-
contraction.

Proof. Every Cg.-contraction T has a triangulation

T(n *
T“(() ﬂm)’
where Ty € Co1 and Tog € Coo [13, p.75]. The hypothesis Dr is Hilbert—Schmidt
implies Dy, is Hilbert—Schmidt. In particular, Dy, is compact. Since T' € THN
implies To1 € THN, and ker Tp; C ker T, (because normal subspaces of T' are re-
ducing), it follows from an application of Proposition 9 that Tp; acts on the zero
space {0}. Hence T' = Ty is a Cop-contraction with a Hilbert—Schmidt defect oper-
ator, and so a Co-contraction [16]. The normal subspace Ho = ker T reduces T'. Put
H1 =H S Hp. Since T is a Cg-contraction, we infer that Hj is finite-dimensional
and that Ty, is invertible. It follows that T is Fredholm with ind T = 0, and so
Proposition 10 applies. |

We next prove our main result, which says that a 7HN contraction T with
Hilbert—Schmidt defect operator, such that normal subspaces of T reduce T, is the
direct sum of a unitary, a normal Cy-contraction and a Cig-contraction.

Theorem 1. Let T € THN be a contraction such that Dt is Hilbert-Schmidt. If
normal subspaces of T reduce T, then

T:Tu@Tn@Tlm

where Ty, is unitary, T, is a normal Co-contraction and Tig is a Cig-contraction
with no invertible parts.

Proof. Since T is contraction, it has a triangulation (cf. [13, p.73])

o To. k
T‘(o ﬂ)’
where Ty. € Co- and T1. € Cy.. If Dy is Hilbert—Schmidt, then so is D, ., and hence

To- is a normal (indeed, diagonal) Co-contraction by Proposition 11. Since normal
subspaces of T are reducing, we get T' = Ty. @ T7.. Therefore, by Proposition 6,

T=Ty.0T, EBTH),
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where T, is unitary and T7g is a Cig-contraction with no invertible parts according
to Proposition 8. O

Recall that an operator T' € B[H] is said to have the bicommutant property if
{T'}" = Alg T, where {T'}"" denotes the double commutant of T' and AlgT denotes
the weakly closed algebra generated by 7" and the identity. An operator T is said to
be reflexive if AlgT = Alg Lat T, where Lat T' denotes the lattice of all T-invariant
subspaces and Alg Lat T is the algebra of all operators S for which LatT C Lat S.
The proof of the following lemma can be found in [14, Theorem 4] and [15, Theorem
5] — also see [17] for some earlier results. As usual, “cnu” is a short for “completely
nonunitary”.

Proposition 12. (a) A cnu Cy.-contraction with a Hilbert-Schmidt defect operator
is reflexive. (b) If a contraction is densely intertwined to a unilateral shift, then it
has the bicommutant property.

Note that item (b) says: if a contraction T is such that WT = SW for some op-
erator W with dense range and some unilateral shift S, then T has the bicommutant
property. Combining Theorem 1 with Proposition 12 one has the following corollary.

Corollary 2. Let T € THN be a contraction such that Dt is Hilbert—Schmidt and
normal subspaces of T are reducing.

(a) If T has no normal direct summand, then T is reflexive.
(b) If dim(ker(A —T%)) # 0 for every A€ H C D with Y (1 —|)]) = oo,
then T has the bicommutant property.

Proof. (a) By Theorem 1, the hypotheses on T" imply that 7" € C19. Hence T is re-
flexive by Proposition 12(a). To prove (b) we argue as follows. If we denote the cnu
part of T by T, then T, has Hilbert—Schmidt defect operator and (by Theorem 1)
T. =T, ®Tig, where T}, is a normal Cp-contraction and Tig is a Cqg-contraction.
Observe that our hypothesis on H implies that the term 77y can not be missing.
Since T, is a Co-contraction, it follows that Z)\@P(T;)(l —|A]) < o0, and hence
ker(A — T7,) # {0} holds for some A € D. We infer by Proposition 7 that op(T7,)
actually fills . Thus T79 can be densely intertwined to a unilateral shift S (see
[15, p.92]), which implies that T can be also densely intertwined to S. Applying
Proposition 12(b) we conclude that T has the bicommutant property. O

Remark 7. Consider the triangulation

To1 * * *

O TOO * *

T= O O T1 1 N*
0 0 O Ty
0] 0] 0] O Ty

* X X X

of a contraction 7', where T;; € C;; and Too € Coo. If T € THN is such that Dy is
compact and normal subspaces of 1" reduce T', and if both Ty and T are injective
with ind Tpg = ind Tog = 0, then it follows from the results of Section 3 that

T=Th®Twow®D,

where 777 is unitary, T1o has no invertible parts and D = Tyg & T, 0o is the diagonal
operator of Proposition 10. If the canonical isometry associated with T7¢ is not
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reductive, then T is reflexive [9, Corollary 2]. Is the canonical isometry associated
with 719 nonreductive under the hypothesis that Dy, is compact?

As a final remark, recall that every contraction T has a unique (orthogonal) direct
sum decomposition T' = T,, ® T,, where T, is unitary and 7. is a cnu contraction
(it is clear that either of the summands may be missing). This is the well-known
Nagy-Foiag-Langer decomposition for contractions [13, p.9]. Completely nonuni-
tary direct summands of class C.o have been characterized in [4] as follows. Let
‘H and K be Hilbert spaces. An operator T in B[H] is said to satisfy the PF-
property, short for Putnam—Fuglede commutativity property, if TX = X V* for
some bounded linear transformation X : K — H and some isometry V in B[K], im-
plies T*X = X V. The cnu direct summand of a contraction T' € B[H] is of class
C.o if and only if T satisfies the PF-property ([4, Lemma 1] — see also [12]).

It is clear from Theorem 1 that 7HA contractions T with Hilbert—Schmidt defect
operator, such that normal subspaces of T" reduce T, have C.¢ cnu direct summands.
Combining this with the results from [4], we have the following (Putnam-Fuglede
type) commutativity result.

Corollary 3. Let T be a THN contraction with a Hilbert-Schmidt defect operator
such that normal subspaces of T reduce T. If TX = XV™* for some X € B[H] and
some isometry V, then T*X = XV, and T|(ranx)7 and V| (er x)L are unitarily
equivalent unitaries.
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