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TIME-SHIFTS GENERALIZED MULTIRESOLUTION ANALYSIS
OVER DYADIC-SCALING REDUCING SUBSPACES

NHAN LEVAN AND CARLOS S. KUBRUSLY

ABSTRACT. A Generalized Multiresolution Analysis (GMRA) associated with
a wavelet is a sequence of nested subspaces of the function space £2(R), with
specific properties, and arranged in such a way that each of the subspaces cor-
responds to a scale 2" over all time-shifts n. These subspaces can be expressed
in terms of a generating-wandering subspace — of the dyadic-scaling operator
— spanned by orthonormal wavelet-functions — generated from the wavelet.
In this article we show that a GMRA can also be expressed in terms of sub-
spaces for each time-shift n over all scales 2"*. This is achieved by means of
“elementary” reducing subspaces of the dyadic-scaling operator. Consequently,
Time-Shifts GMRA associated with wavelets, as well as “sub-GMRA” associ-
ated with “sub-wavelets” will then be introduced.

1. INTRODUCTION

An orthonormal wavelet 1 (-), or simply a wavelet, is a unit vector of the function
space L£?(R) which is such that the wavelet-functions {{mn(-)}(m,n)ez2, generated
from 1)(-) by repeated “unit-time-shift” followed by repeated “dyadic-scaling”, that
is,

(1'1) wm,n(') = \/5 w(2m() - n) = Danw(')v (m’ ’I’L) € sz

are pairwise orthogonal
(12) / qljm,n(t) Em’,n’ (t) dt = 5m,m/ 5n,n’7 (m, m/)a (nv TL/) € Z27

and form a £2?(IR)-basis [14], see also [3, 12] and the references therein. Here T is
the unitary operator unit-time-shift:

(13) Tf:g7 g(t):f(til)a tER,
while D is the unitary operator dyadic-scaling:
(1.4) Df=g, g(t)=v2f(2t), teR.

Consequently, ¥, »(-) can be regarded as ¥(-) for time-shift n and for scale 2. We
note that there exists no function () € £2(R) such that the functions ¢, m () :=
T D™(-) span the space L2(R), [4].

Mathematically speaking, the unitary operators T" and D are basically the same
in the sense that they are both Hilbert space bilateral shift of countably infinite
multiplicity [6], hence they are unitarily equivalent [15]. However, they do not
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commute. This is due to the fact that, from system theoretic viewpoint, T is time-
invariant while D is time-varying. Indeed, DT # T'D but D"™T?" = TD™ for each
m € 7 so that each T2 is unitarily equivalent to T via the unitary D™.

A wavelet can be associated with a Generalized Multiresolution Analysis(GMRA)
[2] which is defined as follows.

Definition 1. A sequence of £2(R)-subspaces {V,, }mez is a GMRA satisfying the
following conditions:

(0) Vo (called core subspace for 1(-)) is T-invariant,
(i) Vm C Vm_H, m € 7,

(11) ﬂfrj:—oo Vm = {0}3

(i) Upe—oc Vin = £3(R),

(iV) DV, = m+1, ME 7.

We note that if condition(o) is replaced by
(0’) Vo is spanned by an orthonormal set {¢((-) — n)}nez,

then the sequence {Vy,, }mez is called a Multiresolution Analysis (MRA) [10, 11, 13],
while ¢(+) is called scaling function. Moreover, the existence of ¢(-) is assumed in
condition (0’). The “m-nested” (because of property (i)) subspaces V,, are approz-
imation subspaces, for scale 2™ and over all time-shifts n. Also, for a MRA, by
properties (0’) and (iv), the scaling orthonormal functions {Dm¢((-) —n) }nEZ span
the subspaces V,,, for each m € Z. The GMRA-subspaces V,, are called “detail-
approximation” subspaces, while those of a MRA are “scaling-approximation” sub-
spaces. The core subspace Vy is actually incoming subspace in the Lax-Phillips
Scattering Theory [9]. Conditions (o) and (0’) apply only to wavelets and are not
required for an incoming subspace.

Reducing subspaces play an important role in operator theory. However, for
wavelet and signal processing, reducing subspaces have not been that useful! This,
perhaps, is due to the fact that an operator is “trapped” by its own reducing
subspaces, that is, it can never leave the subspaces. Consequently, signals living in
reducing subspaces of an operator cannot be processed by the operator. However,
as we shall see in Section 2, there exists a sequence of dyadic-scaling reducing
subspaces spanning £2(R) and plays a key role in what follows.

We begin in Section 2 by showing relationships between a sequence of orthogonal
subspaces — spanning a Hilbert space H, and a H-double-subscripted orthonormal
basis. These, in the case of wavelet-functions {¥m n(-)}(m,n)ez2, result in repre-
sentations of the space £2(R) in terms of orthogonal scale-subspaces — over all
time-shifts, as well as orthogonal time-shift-subspaces — over all scales. The for-
mer turn out to be wandering subspaces for the dyadic-scaling operator, while the
latter are its “elementary” reducing subspaces. These then allow us to introduce the
concept of Time-Shifts GMRA on all of £2(R), and Sub-GMRA on the elementary
reducing subspaces.

2. MAIN RESULTS

We begin by showing relationships between a Hilbert space Orthogonal Subspaces-
Basis and a Double-Subscripted Orthonormal Basis of the Hilbert space.

Let H be a separable Hilbert space with inner product (-,-) and norm || - ||.
Moreover, H is spanned by an Orthogonal Subspaces-Basis (OSB) {Bk}kez, i-e.,
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a sequence of closed, pairwise orthogonal, subspaces: By L B) whenever k # k'.
Therefore

(2.1) H =span{By, k € Z} := \/ By = @Bk-
kez kez

Note: As usual, we are identifying the closure of the span of closed orthogonal sub-
spaces of a Hilbert space (i.e., the topological sum of closed orthogonal subspaces)
with their orthogonal direct sums — these are in fact unitarily equivalent. As a
consequence, any h € ‘H admits the orthogonal expansion

(2.2) h=> b

kEZL
where
(2.3) by =Pg.hand Y |lbg* = ||,
kez

here Pp, denotes the orthogonal projection onto By.

Now suppose that each of the subspaces By is, in turn, spanned by an Or-
thonormal Basis (ONB) {¢x }icz (i-e., for each k € Z, (Y51, Yr,r) = 011 for every
(1,I') € Z?) so that

(2.4) Bi = \/ Vi1, ke
lEZ

Consequently, (2.2) can be further written as

(2.5) h=> " (h, ki) Yes, heEH,
kEZ 1T,
since each by can be expanded in terms of the ONB of By as
(2.6) be =Y (h,vk1) Yrs = Pg,h.
IEZ.

Equation (2.5) implies that the double-subscripted sequence {9y 1}k, )ez> is or-
thonormal:

(2.7) Wkt ) = Ok - Sy (koK) (LU) € Z2,

and constitutes an ONB for H. Thus, given an OSB {By }rcz we have the “associ-
ated” ONB {tx,1}(x,))ez2- From which we can also define the closed subspaces

(2.8) H, = \/ Vi, €.

keZ

It is evident from (2.7) that H; L Hy whenever [ # I'. Moreover, since {1} (k,1yez2
is an ONB for H, the subspaces {H;};cz also form an OSB for H. Therefore, in
addition to (2.1), we now have a second orthogonal decomposition for H

(2.9) H=\H=EEPH.
lEZ leZ

The converse is also true, i.e., if {1x 1} (x,1)ez2 is a H-double-subscripted ONB, then
the sequences {Bj}rez and {H;}icz, defined by (2.4) and (2.8), respectively, are
associated OSB for H.

We summarize the above in the following Lemma.
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Lemma 1. Let {Bg}rez be an orthogonal subspaces-basis for H. Suppose that each
By is spanned by an orthonormal basis {1y }icz,

Bk = \/ ¢k7ly ke Z.
lEZ

Then the double-subscripted orthonormal sequence {tx1}(k1)ez2 is an ONB for H.
Consequently, the subspaces

H = \/ Yy, LE€Z,
kez

are pairwise orthogonal and form a second OSB for H. Conversely, if H admits
a double-subscripted orthonormal basis {Yxi}(k1)ez2, then it also admits an OSB
{Bk}rez, as well as an OSB {H;}icz.-

We have from (2.6)
sh = (b, vka) Yes, heH.

o ez
Similarly,

(2.10) Py h = Z k1) Yk s

keZ
where Py, is the projection onto H;. It then follows that

(2.11) Py, P, f =Y (f ra) Protow = (f, k) Yer = Py,

UVez

and

(2.12) Ps, P f =Y (f 0w 1) Petbr s = (f k1) Yri = Py, -
kez

Therefore,

(2.13) Pg, Py, = Py, Pg, = Py,,, (k)€ 72

This is also evident from the fact that

(2.14) B, N"H; = {¢k71}7

and the orthogonal complements of {¢;} in By, and in H; are orthogonal.

We now “connect” the above with Generalized Multiresolution Analysis associ-
ated with a wavelet 9 (-).

First, consider the function space £2(R) with the double-subscripted orthonor-
mal basis — consisted of the wavelet-functions {9, n(:)}(m,n)ez> generated from
¥(-). Then, by Lemma 1, £2(R) admits the orthogonal decomposition

(2.15) L*(R) = @D Wi,
meZ
where we have renamed By, of (2.1) as W, so that
(2.16) Wi =\ ¥mn(), meZ,
ne”z
as well as the orthogonal decomposition

(2.17) L*(R) = @D Ha,

ne”Z
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where H,, is, as before,
(2.18) Ho =\ ¥mn(), neZ
mEZ

The collection of subspaces {W, }mez and {H,, }nez, besides being OSB for £2(R),
also have special properties due to particular characteristic of the wavelet-functions

{¥m.n()} mn)ezz- First,
nez

Then, since D is unitary, we have [§],

(2.20) Wy = D™ \[ T™)(-) = D™ Wy, m € Z,
nez
where
(2.21) Wo =\ T"¢(:).
nez

Therefore, since W,,, L W,,,» whenever m # m/,
(2.22) D™Wy L D™ W, whenever m #m'.

This means that the subspace Wy is a wandering subspace for D [6]. Moreover,
since {Wy, }mez spans L2(R), W, is also a D-wandering-generating subspace [6].
Note that W, is itself D-wandering. Consequently, (2.16) is a wandering subspaces
decomposition of £2(R), and we write

(2.23) L2R) = P D™Wo =P D™ \/ v(() —n).

meZ meZ neZ
This shows that D is a bilateral shift of infinite multiplicity — since W is infinite
dimensional [6]. More is true. Once W, is D-wandering, the wavelet () is itself a
D-wandering vector, since it follows from (2.22) that

(2.24) D™{4(-)} L D™ {¢(-)} whenever m #m/.

The decomposition (2.23), with Wy defined by (2.21), establishes connections be-
tween wandering subspaces, wandering vectors, and wavelets. These have been
observed by others, beginning with [5], and extensively studied more recently in
[4, 1]. See also [7].

We now turn to the decomposition (2.17) with H,, given by (2.18). It is plain
that H, are D-reducing. Therefore, (2.17) can be rewritten in terms of the part
D,, of D on H,, that is, D,, := D|y,,, as

(2.25) LR =PH. =P \ Dr{v(()-n)},

ne”Z nEZ meZ
where the unitary operator D, is a simple bilateral shift with generating wandering
subspace {¢((-) —n)}.

By construction, each W,, is defined for fixed scale 2™ and over all time-shifts n.
The action of D on £2(R) — according to (2.23) — is to process over all time-shifts n
and successively from each scale 2™ to the next scale 2(m+1: DW,,(v)) = Wy, 41(¥),
for any m € Z. Hence the action of D, in this case, can be characterized as “scales
series processing”. It is evident from (2.25) that, since each H,, is a D-reducing
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subspace, the action of D on H, is simply that of the simple shift D,, — acting at
each time-shift n and over all scales 2. The action of D over all of £L2(R) can now
be characterized as“time-shifts parallel processing”.

We summarize the above as follows.
Theorem 1. Given a wavelet ¥(-) € L*(R), then any f(-) € L2(R) can be repre-

sented by its projections on OSB — spanned by wavelet-functions ¥m, n(-) either
with respect to scales or with respect to time-shifts.

We refer to [8] for an alternate approach to Theorem 1.

Let ¢(-) be a wavelet. It is a simple matter to check that an associated GMRA
is given by

m—1
(2.26) V= P Ww, meL
m’'=—o00
Moreover,
(2.27) V41 =Vm @ Wy, meZ.

We now prove the following result.

Lemma 2. Let {V,,}mez be the GMRA

m—1
V= P Wn, mez,

m/=—o00

associated with a wavelet (-). Then each approzimation subspace Vy, also admits
the orthogonal decomposition

(2.28) Vi =EPH™, mez,
nez
where
m—1 m—1 ,
(2.29) HM = \/ Umrn(s) = \/ D™ ((-)—n), (m,n)E€Z?

which is wavelet-detail-subspace for time-shift n over all scales mot greater than
2m—1,

Proof. We have from (2.26) and (2.19)

m—1 m—1
(2.30) V=P Ww= @ VD"¢()-n), mek

m/=—o00 m/=—00 n€Z
Therefore [7],

-1

(2.31) V=P V D™u(()-n), mez

nezZ m/'=—oo

It then follows that

neE”L

where H{™ is defined by (2.29). 0
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Remark 1. In order to distinguish between the two representations (2.26) and (2.28)
of the approximation subspaces V,,,, we adopt the notation V(™) for the latter

(2.33) v = PHM, mez,
nez

and refer to V(™) as wavelet-time-shifts-approzimation subspaces, while reserve V,,
for the former and call them wavelet-scales-not-greater-than 2™ -approzimation
subspaces.
The above suggests the following Definition.
Definition 2. Let 9(-) be a wavelet. Then the sequence of subspaces V,,,
m—1
Vm = @ Wm/a m e Z,

m’/=—o00

is GMRA associated with #(-), while the sequence of subspaces pim),
pim) .= @H%’”), mE 7,

nez
is Time-Shifts GMRA associated with the wavelet.

It is plain that
(2.34) H™ cH,, (m,n)eZ>

Moreover, Hslm) is an irreducible D*-invariant subspace, that is, it does not contain
any D-reducing subspaces. Also, for each fixed n € Z,

(2.35) H™ cHmHD m ez,

(2.36) DH™ = D, H™ = Hm+D e 7,
and

(2.37) HHD = 1T © {mn()}-

Now, on each Hilbert space H,, there is a dyadic-scaling operator D,, which, as
we have seen, is a simple shift whose wandering-generating subspace, denoted by
Wo,n, and is given by

Won =\ ¥(() = n).

The unit function ¢ ((-) — n) can therefore be defined as “sub-wavelet” living in
H,, — since, by (2.18), the orthonormal wavelet-functions spanning H,, are the
functions {¥, () = D™ ((-) —n) }mGZ — generated from 1 ((-) —n)) by repeated
dyadic-scaling — alone. This suggests that, as in the case for a wavelet ¥(-), we
associate 1/)(() - n) with a sequence of subspaces {V("™},, <z defined by

m—1
(2.38) vimm = [ D {p(() —n)} =HI,

m/=—o0

according to (2.29). It then follows from this and from (2.34)—(2.37) the next
proposition.
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Proposition 1. For each n € Z, the sequences of subspaces {V™™ Y, o of Hy,
defined by

(2.39) ymmn) = Hm) - (m,n) € 72,
satisfy the following four conditions:

(i) pmn cpmtin) -y ez,
i) Moo V™™ = {0},

m=—0o0
— 00

(
(iii) U,,—_ o V™™ =H,,
(iv) D, Vmm) = pmtin) oy e 7,

It follows from (2.33) that the core subspace V() admits the decomposition

(2.40) VO =PHY, mez,
nez

where
—1

(2.41) HY = \/ D™((-)—n).

Even though V(© is T-invariant, the core subspaces H%O) are not, since
-1
(2.42) THY = \/ TD™)((-)-n),

m=—0o0

\/ D)~ (nt2m)).

m=—0oQ

(2.43)

Therefore, for each n € Z, the sequence {V(™™ 1, 7 satisfies all the conditions of a
GMRA — except for condition (o). We therefore refer to each sequence {V(™™1, ;
as “Sub-GMRA” associated with the sub-wavelet ¥((-) —n) — living on Hx.

We now prove the following theorem.

Theorem 2. Let ¢(-) € L?(R) be a wavelet. Then each “sub-wavelet” ¥((-) —n),
n #0, can be associated with a Sub-GMRA {V(m™Y, s — defined on 'H,,. Con-
sequently, the Time-Shifts GMRA {V(™},,c; — associated with the wavelet (-)
— can be decomposed into Sub-GMRA {V(™™Y, <7 as

(2.44) vm = @ pimn),
n'€7
Moreover,
(2.45) Pyon f(1) = Z Py f(-),  f() € L*R), meZ,
neE”L

where Py, o) f(+) is the wavelet time-shifts approzimation of f(), and Py m.n f(+)
is approzimation of f(-) for scale 2™~ and for time-shift n.

Proof. Let () be a wavelet and let {V(™}, 7 be its associated Time-Shifts
GMRA. (2.44) follows from the decomposition (2.33) and Proposition 1. Next,
it follows from (2.33) that any P, f(-) € V(™ admits the orthogonal decompo-

sition
Py F() =Y K™ (),

nez
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where

W) evtmmand Y MO < oo

neE”Z
keeping in mind that V(™™ = H%m). Therefore,
F™ = Py Pyen {f()} = Py {F()},
since V(™) ¢ V™) by (2.44). This finishes the proof. O

An immediate consequence of the above is:

Corollary 1. With respect to a wavelet (-) € L2(R), the space L2(R) admits the
orthogonal decomposition

(2.46) LR =V™ o B W, mez,

and therefore,

(2.47) L2R) =P H™ & P Ham)y, mEL
ne”Z nez

where

(2.48) Ho(m) = \/ Dm,w((-) -n), (m,n)e 72,

is the wavelet-detail subspace for time-shift n over all scales not smaller than 2™.

3. CONCLUSIONS

We have developed in this article the concept of Time-Shifts Generalized Multireso-
lution Analysis associated with a wavelet, and the concept of Sub-GMRA associated
with a sub-wavelet.

‘We have shown that if {V(m)}mez is Time-Shifts GMRA associated with a wave-
let t(-). Then the set of “m-nested” subspaces {H&m) Ymez of Hy, defined by

m—1

H e\ Gwenl)= ) D™0(()=n). (mm) €22,

m/=—o00 m/=—o0

constitutes Sub-GMRA for the sub-wavelet 1((-) — n) — living in H,.

The reason for referring to ¥((-) —n) € H,, as sub-wavelet is that it behaves
like a wavelet on the subspace H, — since the orthonormal wavelet-functions
{¥mn(-)}mez spanning H,, are generated from 1 ((:) —n) by repeated dyadic-
scaling only, instead of by repeated unit-time-shift followed by repeated dyadic-
scaling, as in the case of the wavelet-functions {{m n(-)}(m,n)ez2-

A scaling function ¢(+) is referred to as father wavelet, while a wavelet ¥(+) is
called mother wavelet. We therefore propose the term “children wavelets” for the
functions ¥((-) —n), 0#n € Z.

The central result of our work can be succinctly stated as: “The GMRA associ-
ated with each of the (children) wavelets 1((-) —n) for n 0 constitute the GMRA
associated with the (mother) wavelet ¢ (-)”.
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