ON GENERATING WANDERING SUBSPACES FOR UNITARY OPERATORS

C.S. KUBRUSLY AND N. LEVAN

ABSTRACT. A bilateral shift U on a Hilbert space $\mathcal H$ induces an orthogonal decomposition of $\mathcal H$ consisting of reducing subspaces on which each direct summand of U is a bilateral shift of multiplicity one. This extends to a unitary operator that has a generating wandering subspace. It is shown that if U is unitary and $\mathcal W$ is U-wandering, then the span of all images of $\mathcal W$ under the integral powers of U is unitarily equivalent to a direct sum of reducing subspaces generated by one-dimensional spaces. This yields a double indexed orthonormal basis, and hence a basis with a "Fubini-like" property, where summation order can be interchanged. The case of irreducible-invariant subspaces is also considered.

1. Introduction

Throughout this paper \mathcal{H} is a (complex, infinite-dimensional but not necessarily separable) Hilbert space. By a subspace we mean a *closed* linear manifold of \mathcal{H} . Let U be an operator on \mathcal{H} (i.e., a bounded linear transformation of \mathcal{H} into itself). Recall that an invertible operator U is one that has a bounded inverse U^{-1} . A unitary operator is an invertible isometry (or, equivalently, an isometry U such that $U^* = U^{-1}$, where U^* is the adjoint of U — isometries preserve inner product). Also recall that the (linear) span of a subset A of \mathcal{H} , denoted by span A, is the linear manifold of \mathcal{H} consisting of all (finite) linear combinations of vectors in A; its closure is a subspace of \mathcal{H} , usually denoted by $\bigvee A$. Let \mathbb{Z} denote the set of all integers.

Proposition 1. Take any set A of vectors in \mathcal{H} and let m be an arbitrary integer in \mathbb{Z} . If U is an invertible operator on \mathcal{H} , then

$$U^m \bigvee A = \bigvee U^m A.$$

Proof. Since U is invertible, U^m is well-defined for any (positive, negative or null) integer m and, since U^m is continuous,

$$U^m(\operatorname{span} A)^- \subseteq (U^m \operatorname{span} A)^-$$

(see e.g., [8], Problem 3.46). Moreover,

$$(U^m(\operatorname{span} A)^-)^- = U^m(\operatorname{span} A)^-$$

because U^{-m} is continuous (so that inverse image of closed sets are closed). Thus

Date: April 2003.

²⁰⁰⁰ Mathematics Subject Classification. 47A15, 42A24.

Key words and phrases. Wandering subspaces, decompositions, unitary operators.

Supported in part by Brazilian National Research Council (CNPq).

$$U^m(\operatorname{span} A)^- \subseteq (U^m \operatorname{span} A)^- \subseteq (U^m(\operatorname{span} A)^-)^- = U^m(\operatorname{span} A)^-,$$

and hence

$$U^m(\operatorname{span} A)^- = (U^m \operatorname{span} A)^-.$$

But U^m is linear and span A consists of finite linear combinations. Therefore,

$$U^m \operatorname{span} A = \operatorname{span} (U^m A).$$

The above two identities close the proof: $U^m(\operatorname{span} A)^- = (\operatorname{span} (U^m A))^-$.

Definition 1. A subspace W of \mathcal{H} is a wandering subspace for an operator U on \mathcal{H} (or a U-wandering subspace) if it is orthogonal to its images under all positive powers of U; that is,

$$\mathcal{W} \perp U^k \mathcal{W}$$
 for every integer $k \ge 1$.

A vector x in \mathcal{H} is a wandering vector for U (or a U-wandering vector) if the one-dimensional subspace span $\{x\}$ is U-wandering.

Let Γ be an arbitrary (not necessarily countable) index set. Throughout the paper m and n are arbitrary indices in \mathbb{Z} , and α and β are arbitrary indices in Γ . Unless otherwise stated, sums and spans are supposed to rum over \mathbb{Z} if indexed by m, or over Γ if indexed by α (uncountable sums are defined as usual; see, for instance, [3] or [8]).

Proposition 2. If U is a unitary operator, then W is U-wandering if and only if

$$U^m \mathcal{W} \perp U^n \mathcal{W}$$
 whenever $m \neq n$.

Proof. Let U be unitary and take arbitrary integers m and n in \mathbb{Z} . Since U is invertible and its inverse also is unitary, it follows that U^m is unitary. Recall that a unitary operator preserves inner product. Thus, for any subspaces W and M of \mathcal{H} ,

$$\mathcal{W} \perp \mathcal{M} \iff U^m \mathcal{W} \perp U^m \mathcal{M}.$$

Then, for each integer $k \ge 1$, $W \perp U^k W$ if and only if $U^m W \perp U^{m+k} W$ so that

$$\mathcal{W} \perp U^k \mathcal{W} \iff U^m \mathcal{W} \perp U^n \mathcal{W}$$

whenever $m \neq n$.

Let $\{e_{\alpha}\}$ be an orthogonal set of unit vectors in \mathcal{H} indexed by Γ . With \bigvee denoting closure of span, as usual, put

$$W_0 = \bigvee_{\alpha} e_{\alpha} = (\operatorname{span} \{e_{\alpha}\}_{{\alpha} \in \Gamma})^-,$$

the subspace of \mathcal{H} spanned by the orthonormal set $\{e_{\alpha}\}$. Equivalently, take any subspace \mathcal{W}_0 of \mathcal{H} and let $\{e_{\alpha}\}$ be an orthonormal basis for \mathcal{W}_0 (cardinally of Γ is the orthogonal dimension of \mathcal{W}_0).

Proposition 3. If U is unitary and W_0 is U-wandering, then

$$U^m e_{\alpha} \perp U^n e_{\beta}$$

for all distinct pairs of indices (m, α) and (n, β) (i.e., whenever $(m, \alpha) \neq (n, \beta)$).

Proof. If U is unitary, then $e_{\alpha} \perp e_{\beta}$ implies $U^m e_{\alpha} \perp U^m e_{\beta}$ whenever $\alpha \neq \beta$. It is clear that $U^m e_{\alpha}$ lies in $U^m \mathcal{W}_0$. Thus, if U is unitary and \mathcal{W}_0 is U-wandering, then Proposition 2 ensures that $U^m e_{\alpha} \perp U^n e_{\beta}$ whenever $m \neq n$.

2. Main Result

Suppose U is an invertible operator on \mathcal{H} and take the family of operators $\{U^m\}$ indexed by \mathbb{Z} . For each α in Γ consider the subspace of \mathcal{H} spanned by all images of e_{α} under the integral powers of U,

$$\mathcal{H}_{\alpha} = \bigvee_{m} U^{m} e_{\alpha},$$

which is separable (spanned by a countable set). In this case we say that \mathcal{H}_{α} is generated by the one-dimensional space span $\{e_{\alpha}\}$. If U is unitary, then each \mathcal{H}_{α} reduces U. Indeed, each \mathcal{H}_{α} is invariant for every integral power of U and, since $U^* = U^{-1}$, each \mathcal{H}_{α} is invariant for U and U^* ; that is, each \mathcal{H}_{α} reduces U.

Lemma 1. The assertions below are equivalent.

- (a) $U^m e_{\alpha} \perp U^n e_{\beta}$ whenever $\alpha \neq \beta$.
- (b) $\mathcal{H}_{\alpha} \perp \mathcal{H}_{\beta}$ whenever $\alpha \neq \beta$.

Now consider the following further assertions.

- (c) U is unitary and W_0 is U-wandering.
- (d) U is unitary and each e_{α} is U-wandering.

Claim: (c) implies (a) and (a,d) implies (c).

Proof. Suppose $\alpha \neq \beta$. If $U^m e_{\alpha} \perp U^n e_{\beta}$ for every n, then $U^m e_{\alpha} \perp \bigvee_n U^n e_{\beta}$, which implies that $\bigvee_m U^m e_{\alpha} \perp \bigvee_n U^n e_{\beta}$ (reason: inner product is linear in the first argument and continuous). Therefore (a) implies (b). Conversely, if $\mathcal{H}_{\alpha} \perp \mathcal{H}_{\beta}$, then $U^m e_{\alpha} \perp U^n e_{\alpha}$ since $U^m e_{\alpha} \in \mathcal{H}_{\alpha}$ and $U^n e_{\beta} \in \mathcal{H}_{\beta}$. Hence (b) implies (a). And (c) implies (a) by Proposition 3. Now suppose (a) holds and U is unitary. Thus $e_{\alpha} \perp U^m e_{\beta}$ for every m. If each e_{α} is U-wandering, then $e_{\alpha} \perp U^k e_{\beta}$ for every $k \geq 1$ even if $\alpha = \beta$. Therefore, $\mathcal{W}_0 = \bigvee_{\alpha} e_{\alpha} \perp U^k e_{\beta}$ for all β whenever $k \geq 1$ so that $\mathcal{W}_0 \perp \bigvee_{\beta} U^k e_{\beta}$ for every $k \geq 1$. But Proposition 1 says that this is equivalent to $\mathcal{W}_0 \perp U^k \bigvee_{\beta} e_{\beta} = U^k \mathcal{W}_0$ for every $k \geq 1$; that is, \mathcal{W}_0 is U-wandering. Outcome: (a,d) implies (c).

Let \mathcal{W}_m be the image \mathcal{W}_0 under U^m ,

$$\mathcal{W}_m = U^m \mathcal{W}_0 = U^m \bigvee_{\alpha} e_{\alpha}.$$

Since U is invertible, each \mathcal{W}_m is a subspace of \mathcal{H} (reason: if U is invertible, then U^{-m} is continuous and \mathcal{W}_m is the inverse image of the subspace \mathcal{W}_0 under U^{-m}). Moreover (Proposition 1), if U is invertible, then $\mathcal{W}_m = \bigvee_{\alpha} U^m e_{\alpha}$. Furthermore (Proposition 2), if U is unitary, then \mathcal{W}_0 is U-wandering if and only if

$$W_m \perp W_n$$
 whenever $m \neq n$.

Theorem 1. If U is unitary and W_0 is U-wandering, then

$$\bigoplus_{m} \mathcal{W}_{m} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}.$$

Proof. First recall that if $\{\mathcal{M}_{\gamma}\}$ is any indexed family of pairwise orthogonal subspaces of \mathcal{H} , then their direct sum (the Hilbert space consisting of all square-summable families of vectors in \mathcal{H} with each vector in each \mathcal{M}_{γ}) is unitarily equivalent to their topological sum; that is,

$$\bigoplus_{\gamma} \mathcal{M}_{\gamma} \cong \left(\sum_{\gamma} \mathcal{M}_{\gamma} \right)^{-} = \bigvee_{\gamma} \mathcal{M}_{\gamma},$$

where \cong stands for unitary equivalence. From now on suppose U is unitary and W_0 is U-wandering. Thus $W_m \perp W_n$ whenever $m \neq n$ according to Proposition 2. Therefore (cf. Proposition 1),

$$\bigoplus_{m} \mathcal{W}_{m} \cong \bigvee_{m} \mathcal{W}_{m} = \bigvee_{m} \bigvee_{\alpha} U^{m} e_{\alpha}.$$

On the other hand, Lemma 1 ensures that $\mathcal{H}_{\alpha} \perp \mathcal{H}_{\beta}$ whenever $\alpha \neq \beta$, and hence

$$\bigoplus_{\alpha} \mathcal{H}_{\alpha} \cong \bigvee_{\alpha} \mathcal{H}_{\alpha} = \bigvee_{\alpha} \bigvee_{m} U^{m} e_{\alpha}.$$

Now set $f_{m,\alpha} = U^m e_{\alpha}$ and observe from Proposition 3 that $\{f_{m,\alpha}\}$ is an orthonormal set indexed by $\mathbb{Z} \times \Gamma$. Consider the Hilbert space $\bigvee_{m,\alpha} f_{m,\alpha}$ spanned by this orthonormal set so that $\{f_{m,\alpha}\}$ is an orthonormal basis for it. By unconditional convergence of the Fourier series we get

$$\bigvee_{m} \bigvee_{\alpha} U^{m} e_{\alpha} = \bigvee_{m} \bigvee_{\alpha} f_{m,\alpha} = \bigvee_{m,\alpha} f_{m,\alpha} = \bigvee_{\alpha} \bigvee_{m} f_{m,\alpha} = \bigvee_{\alpha} \bigvee_{m} U^{m} e_{\alpha}.$$

Since unitarily equivalence is transitive,

$$\bigoplus_{m} \mathcal{W}_{m} \cong \bigoplus_{\alpha} \mathcal{H}_{\alpha},$$

which completes the proof by writing = for \cong as usual.

Suppose U is a unitary operator on \mathcal{H} and \mathcal{W} is a wandering subspace for U. If the family of orthogonal (cf. Proposition 2) subspaces $\{U^m\mathcal{W}\}$ span the whole space \mathcal{H} ; (i.e., if $\mathcal{H} = \bigoplus_m U^m\mathcal{W}$), then we say that \mathcal{W} is a generating wandering subspace. Thus Theorem 1 says that if \mathcal{W}_0 is a generating wandering subspace for a unitary U, then \mathcal{H} admits an orthogonal direct sum decomposition $\mathcal{H} = \bigoplus_{\alpha} \mathcal{H}_{\alpha}$ consisting of reducing subspaces so that the unitary operator U is decomposed as $U = \bigoplus_{\alpha} U|_{\mathcal{H}_{\alpha}}$, where each $U|_{\mathcal{H}_{\alpha}}$ is unitary (direct summand of a unitary) acting on the subspace $\mathcal{H}_{\alpha} = \bigvee_m U^m e_{\alpha}$ generated by the one-dimensional subspace span $\{e_{\alpha}\}$. Hence, if the U-wandering subspace \mathcal{W}_0 is generating, then the orthonormal set $\{f_{m,\alpha}\}$ with $f_{m,\alpha} = U^m e_{\alpha}$ is a double indexed orthonormal basis for \mathcal{H} , and so (Fourier series)

$$x = \sum_{m} \sum_{\alpha} \langle x; f_{m,\alpha} \rangle f_{m,\alpha} = \sum_{m,\alpha} \langle x; f_{m,\alpha} \rangle f_{m,\alpha} = \sum_{\alpha} \sum_{m} \langle x; f_{m,\alpha} \rangle f_{m,\alpha}$$

for every x in \mathcal{H} (where $\langle \ ; \ \rangle$ denotes the inner product on \mathcal{H}). Double indexed orthonormal bases yield a "Fubini-like" property allowing that summation order be interchanged, which has shown useful in wavelets theory (see Proposition 2 in [10]).

3. Applications

There are some alternative (but equivalent) ways of defining bilateral shifts on a Hilbert space (see e.g., [2], [4], [5], [6], [7], [11]). One of them goes as follows. An operator U acting on a Hilbert space \mathcal{H} is a bilateral shift if there exists an infinite family $\{\mathcal{W}_m\}$ indexed by \mathbb{Z} of nonzero pairwise orthogonal subspaces of \mathcal{H} such that $\mathcal{H} = \bigoplus_m \mathcal{W}_m$ (i.e., the orthogonal family $\{\mathcal{W}_m\}$ spans \mathcal{H}) and U maps each \mathcal{W}_m isometrically onto \mathcal{W}_{m+1} . This ensures that $U|_{\mathcal{W}_m}:\mathcal{W}_m\to\mathcal{W}_{m+1}$ is a surjective isometry (i.e., a unitary transformation) so that the subspaces \mathcal{W}_m are all unitarily equivalent and their common dimension is the multiplicity of U. It is readily verified that U is unitary and W_0 is U-wandering. Therefore, W_0 is a generating wandering subspace for U, and the multiplicity of U is precisely the orthogonal dimension of \mathcal{W}_0 . Observe that \mathcal{W}_0 is separable if and only if \mathcal{H} is, and recall that a shift of multiplicity μ (where μ is any cardinal number) is the direct sum of μ shifts of multiplicity one. Here is a straightforward corollary of Theorem 1.

Corollary 1. Suppose U is a bilateral shift acting on a Hilbert space \mathcal{H} . Let $\{e_{\alpha}\}$ be an orthonormal basis for W_0 indexed by Γ . Then (a) \mathcal{H} admits the decomposition

$$\mathcal{H}=\bigoplus_{\alpha}\mathcal{H}_{\alpha},$$

where each $\mathcal{H}_{\alpha} = \bigvee_{m} U^{m} e_{\alpha}$ (a separable subspace of \mathcal{H} generated by the one-dimensional space span $\{e_{\alpha}\}\)$ reduces U so that

$$U = \bigoplus_{\alpha} U_{\alpha},$$

 $U = \bigoplus_{\alpha} U_{\alpha},$ with $U_{\alpha} = U|_{\mathcal{H}_{\alpha}}$. Moreover, (b) each U_{α} is a bilateral shift of multiplicity one acting on \mathcal{H}_{α} .

Proof. Part (a) is an immediate consequence of Theorem 1, and part (b) is readily verified once $U_{\alpha}f_{m,\alpha} = U^{m+1}e_{\alpha} = f_{m+1,\alpha}$ for every m in \mathbb{Z} . Thus each U_{α} shifts the \mathbb{Z} -indexed orthonormal basis $\{f_{m,\alpha}\}$ for each \mathcal{H}_{α} , and therefore U_{α} is a bilateral shift of multiplicity one on \mathcal{H}_{α} .

Consider the above setup where U is a bilateral shift on \mathcal{H} and $\mathcal{W}_0 = \bigvee_{\alpha} e_{\alpha}$ is a generating wandering subspace for U. Recall that $\mathcal{W}_m = U^m \mathcal{W}_0$ and put

$$\mathcal{H}^+ = \bigvee_{k \in \mathbb{N}_0} \mathcal{W}_k.$$

 \mathbb{N}_0 is the set of all *nonnegative* integers. This is a subspace of \mathcal{H} spanned by the orthogonal $(W_m \perp W_n \text{ for } m \neq n)$ sequence of subspaces $\{W_k\}$. Thus we may write

$$\mathcal{H}^+ = igoplus_{k \in \mathbb{N}_0} \mathcal{W}_k.$$

It is known from [6] that $\mathcal{H}^+ = \bigvee_{k \in \mathbb{N}_0} U^k \mathcal{W}_0$ is an irreducible-invariant subspace for U (which means that \mathcal{H}^+ is U-invariant but not U^* -invariant) and, conversely, if M is an irreducible invariant subspace for U, then there exists a wandering subspace W for U such that $\mathcal{M} = \bigvee_{k \in \mathbb{N}_0} U^k \mathcal{W}$. Now, for each α in Γ , set

$$\mathcal{H}_{\alpha}^{+} = \bigvee_{k \in \mathbb{N}_{0}} U^{k} e_{\alpha}.$$

Each \mathcal{H}_{α}^{+} is a separable (spanned by a countable set) subspace of \mathcal{H} generated by the one-dimensional space span $\{e_{\alpha}\}$, which is clearly U-invariant. But none of them reduces U (i.e., none of them is U^* -invariant). Indeed, since U^* is invertible and $\{U^m e_{\alpha}\}$ is an orthonormal set (cf. Propositions 1 and 3),

$$U^*\mathcal{H}_{\alpha}^+ = \bigvee_{k \in \mathbb{N}_0} U^*U^k e_{\alpha} = \bigvee_{k \in \mathbb{N}_0} U^{k-1} e_{\alpha} \cong \bigoplus_{k \in \mathbb{N}_0} U^{k-1} e_{\alpha} = U^* e_{\alpha} \oplus \bigoplus_{k \in \mathbb{N}_0} U^k e_{\alpha} \cong U^* e_{\alpha} \oplus \mathcal{H}_{\alpha}^+$$

and so $U^*\mathcal{H}^+_{\alpha} \not\subseteq \mathcal{H}^+_{\alpha}$ (since $U^*e_{\alpha} \neq 0$). Consider the family $\{\mathcal{H}^+_{\alpha}\}$ indexed by Γ .

Corollary 2. $\{\mathcal{H}_{\alpha}^{+}\}$ is a family of pairwise orthogonal irreducible-invariant subspaces for U which decomposes the irreducible-invariant subspace \mathcal{H}^{+} :

$$\mathcal{H}^+ = \bigoplus_{\alpha} \mathcal{H}^+_{\alpha}.$$

Proof. $\{e_{\alpha}\}$ is an orthonormal basis for \mathcal{W}_0 . It follows by Proposition 3 that $\{U^k e_{\alpha}\}$ is an orthogonal family of vectors, and so $\{\mathcal{H}_{\alpha}^+\}$ is an orthogonal family of subspaces (see proof of Lemma 1). Moreover, it also follows that $\mathcal{H}^+ = \bigvee_{k \in \mathbb{N}_0} U^k \bigvee_{\alpha} e_{\alpha}$, and hence $\mathcal{H}^+ = \bigvee_{k \in \mathbb{N}_0} \bigvee_{\alpha} U^k e_{\alpha}$ by Proposition 1. But $\{U^k e_{\alpha}\}$ is an orthonormal basis for the Hilbert space $\bigvee_{k,\alpha} U^k e_{\alpha}$. Thus the same argument as in proof of Theorem 1 (unconditional convergence of the Fourier series) yields the desired result; that is, $\mathcal{H}^+ = \bigvee_{\alpha} \bigvee_{k \in \mathbb{N}_0} U^k e_{\alpha} = \bigvee_{\alpha} \mathcal{H}^+_{\alpha} \cong \bigoplus_{\alpha} \mathcal{H}^+_{\alpha} \text{ since } \mathcal{H}^+_{\alpha} \perp \mathcal{H}^+_{\beta} \text{ whenever } \alpha \neq \beta$. \square

For applications of these decompositions in wavelets theory the reader is referred to [10] and [9] (also see [1]).

REFERENCES

- I. Antoniou and K. Gustafson, Wavelets and stochastic processes, Math. Comput. Simulation 49 (1999), 81–104.
- 2. R. Beals, Topics in Operator Theory (The University of Chicago Press, Chicago, 1971).
- 3. A. Brown and C. Pearcy, Introduction to Operator Theory I: Elements of Functional Analysis (Springer, New York, 1977).
- J.B. Conway, The Theory of Subnormal Operators (Mathematical Surveys and Monographs Vol. 36, Amer. Math. Soc., Providence, 1991).
- 5. P.A. Fillmore, Notes on Operator Theory (Van Nostrand, New York, 1970).
- 6. P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112.
- C.S. Kubrusly, An Introduction to Models and Decompositions in Operator Theory (Birkhäuser, Boston, 1997).
- 8. C.S. Kubrusly, *Elements of Operator Theory* (Birkhäuser, Boston, 2001).
- C.S. Kubrusly and N. Levan, Shift Reducing Subspaces and Irreducible-Invariant Subspaces Generated by Wandering Vectors and Application, (submitted).
- N. Levan and C.S. Kubrusly, A wavelet "time-shift-detail" decomposition, Math. Comput. Simulation 63 (2003), 73–78.
- 11. H. Radjavi and P. Rosenthal, Invariant Subspaces (Springer, New York, 1973).

Catholic University of Rio de Janeiro, 22453-900, Rio de Janeiro, RJ, Brazil $E\text{-}mail\ address$: carlos@ele.puc-rio.br

UNIVERSITY OF CALIFORNIA IN LOS ANGELES, LOS ANGELES, CA 90024-1594, USA *E-mail address*: levan@ee.ucla.edu