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ON GENERATING WANDERING SUBSPACES FOR UNITARY
OPERATORS

C.S. KUBRUSLY AND N. LEVAN

ABSTRACT. A bilateral shift U on a Hilbert space H induces an orthogonal
decomposition of H consisting of reducing subspaces on which each direct
summand of U is a bilateral shift of multiplicity one. This extends to a unitary
operator that has a generating wandering subspace. It is shown that if U
is unitary and W is U-wandering, then the span of all images of W under
the integral powers of U is unitarily equivalent to a direct sum of reducing
subspaces generated by one-dimensional spaces. This yields a double indexed
orthonormal basis, and hence a basis with a “Fubini-like” property, where sum-
mation order can be interchanged. The case of irreducible-invariant subspaces
is also considered.

1. INTRODUCTION

Throughout this paper H is a (complex, infinite-dimensional but not necessarily
separable) Hilbert space. By a subspace we mean a closed linear manifold of H.
Let U be an operator on H (i.e., a bounded linear transformation of H into itself).
Recall that an invertible operator U is one that has a bounded inverse U~!. A uni-
tary operator is an invertible isometry (or, equivalently, an isometry U such that
U* = U~', where U* is the adjoint of U isometries preserve inner product).
Also recall that the (linear) span of a subset A of H, denoted by span A, is the
linear manifold of H consisting of all (finite) linear combinations of vectors in A;
its closure is a subspace of H, usually denoted by \/ A. Let Z denote the set of all
integers.

Proposition 1. Take any set A of vectors in H and let m be an arbitrary integer
in Z. If U is an invertible operator on H, then

Um\/A=\/U"A
Proof. Since U is invertible, U™ is well-defined for any (positive, negative or null)
integer m and, since U™ is continuous,

U™ (span A)~ C (U™span A)~
(see e.g., [8], Problem 3.46). Moreover,
(U™(span A)™)~ = U™ (span A)~
because U~™ is continuous (so that inverse image of closed sets are closed). Thus
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U™ (span A)~ C (U™span A)~ C (U™(spanA)”)” = U™(span A4)~,

and hence
U™(span A)” = (U™span A) ™.

But U™ is linear and span A consists of finite linear combinations. Therefore,
U™span A = span (U™A).
The above two identities close the proof: U™ (span A)~ = (span (U™A))~. O

Definition 1. A subspace W of H is a wandering subspace for an operator U on
H (or a U-wandering subspace) if it is orthogonal to its images under all positive
powers of U; that is,

W LU*W  for every integer k> 1.
A vector z in H is a wandering vector for U (or a U-wandering vector) if the

one-dimensional subspace span {z} is U-wandering.

Let T' be an arbitrary (not necessarily countable) index set. Throughout the
paper m and n are arbitrary indices in Z, and « and [ are arbitrary indices in T'.
Unless otherwise stated, sums and spans are supposed to rum over Z if indexed
by m, or over I if indexed by « (uncountable sums are defined as usual; see, for
instance, [3] or [8]).

Proposition 2. If U is a unitary operator, then W is U-wandering if and only if
U™ W LU™W  whenever m # n.

Proof. Let U be unitary and take arbitrary integers m and n in Z. Since U is in-
vertible and its inverse also is unitary, it follows that U™ is unitary. Recall that a
unitary operator preserves inner product. Thus, for any subspaces W and M of H,

WIM — U™WLU™M.

Then, for each integer k>1, W L U*W if and only if U™W L U™t*W so that
WLUW <« U™WLU"W
whenever m # n. O

Let {e4} be an orthogonal set of unit vectors in H indexed by I'. With \/ denoting
closure of span, as usual, put

Wo = \/ea = (Span {ea}aeF) y

the subspace of H spanned by the orthonormal set {e,}. Equivalently, take any
subspace Wy of H and let {e,} be an orthonormal basis for Wy (cardinally of T" is
the orthogonal dimension of W).

Proposition 3. If U is unitary and Wy is U-wandering, then
Umea L U”eg

for all distinct pairs of indices (m,a) and (n,3) (i.e., whenever (m,a) # (n,3)).
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Proof. If U is unitary, then e, L eg implies U™e, L U™eg whenever a # 3. It is
clear that U™e, lies in U™W,. Thus, if U is unitary and W is U-wandering, then
Proposition 2 ensures that U™e, L U"eg whenever m # n. O

2. MAIN RESULT

Suppose U is an invertible operator on H and take the family of operators {U™}
indexed by Z. For each « in I' consider the subspace of H spanned by all images
of e, under the integral powers of U,

He = \/Umea,

which is separable (spanned by a countable set). In this case we say that H, is
generated by the one-dimensional space span {e,}. If U is unitary, then each H,,
reduces U. Indeed, each H, is invariant for every integral power of U and, since
U* =U"", each H, is invariant for U and U*; that is, each H,, reduces U.

Lemma 1. The assertions below are equivalent.

(a) UMeq L Umeg whenever o # (.

(b) Ho L Hp whenever a # 3.
Now consider the following further assertions.

(c) U is unitary and Wy is U-wandering.

(d) U is unitary and each ey is U-wandering.
Claim: (c) implies (a) and (a,d) implies (c).
Proof. Suppose o # 3. If U™e, L U™eg for every n, then U™e, L \/, Ueg,
which implies that \/,, U™es L \/, U"eg (reason: inner product is linear in the
first argument and continuous). Therefore (a) implies (b). Conversely, if H, L Hg,
then U™e, L U"e, since U™e, € Ho and U™eg € Hg. Hence (b) implies (a). And
(c) implies (a) by Proposition 3. Now suppose (a) holds and U is unitary. Thus
eq L U™eg for every m. If each e, is U-wandering, then e, L Ukeﬁ for every k>1
even if & = 3. Therefore, Wy = V_ea L U’“e/@ for all § whenever k>1 so that
Wy L \/[3 Ukeg for every k>1. But Proposition 1 says that this is equivalent to
W, L Uk Vses = U*W, for every k>1; that is, Wy is U-wandering. Outcome:
(a,d) implies (c). |

Let W,,, be the image Wy under U™,

Wi =U"Wo =U™\/ ea.

Since U is invertible, each W,, is a subspace of H (reason: if U is invertible, then
U™ is continuous and W,, is the inverse image of the subspace Wy under U~™).
Moreover (Proposition 1), if U is invertible, then W,,, = \/_ U™e,. Furthermore
(Proposition 2), if U is unitary, then W)y is U-wandering if and only if

Wi LW,  whenever m # n.

Theorem 1. If U is unitary and Wy is U-wandering, then

P W =P Ha.
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Proof. First recall that if {M,} is any indexed family of pairwise orthogonal sub-
spaces of H, then their direct sum (the Hilbert space consisting of all square-
summable families of vectors in 7 with each vector in each M.,,) is unitarily equiv-
alent to their topological sum; that is,

EVBM7 = (;Mv) - \W/MW,

where = stands for unitary equivalence. From now on suppose U is unitary and
Wy is U-wandering. Thus W,, 1. W,, whenever m # n according to Proposition 2.
Therefore (cf. Proposition 1),

DW=\ W =V V07
On the other hand, Lemma 1 ensures that H, L Hg whenever a # 3, and hence

PHa =\ Ha=\\U"ea.

Now set fm,o = U™eq and observe from Proposition 3 that {f., o} is an orthonor-
mal set indexed by Z x I'. Consider the Hilbert space \/m7a fm.a spanned by this
orthonormal set so that {f., o} is an orthonormal basis for it. By unconditional
convergence of the Fourier series we get

VVUea =V foa =V fia =V fa =V V U
m m « m,x a m a m
Since unitarily equivalence is transitive,

DW= P

~

which completes the proof by writing = for & as usual. O

Suppose U is a unitary operator on H and W is a wandering subspace for U. If
the family of orthogonal (cf. Proposition 2) subspaces {U™W} span the whole space
H; (ie., if H=&p,, U™W), then we say that W is a generating wandering subspace.
Thus Theorem 1 says that if W) is a generating wandering subspace for a unitary U,
then 7 admits an orthogonal direct sum decomposition H = @, H. consisting of
reducing subspaces so that the unitary operator U is decomposed as U = @, Ul#x..,
where each Ul is unitary (direct summand of a unitary) acting on the subspace
Hao =V,, U™eq generated by the one-dimensional subspace span {e,}. Hence, if
the U-wandering subspace W is generating, then the orthonormal set { f,, o} with
fm.a = U™e, is a double indexed orthonormal basis for H, and so (Fourier series)

fE—ZZ fma fma:Z< fma fma ZZ fma met

m,o

for every z in H (where ( ; ) denotes the inner product on H). Double indexed or-
thonormal bases yield a “Fubini-like” property allowing that summation order be
interchanged, which has shown useful in wavelets theory (see Proposition 2 in [10]).
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3. APPLICATIONS

There are some alternative (but equivalent) ways of defining bilateral shifts on a
Hilbert space (see e.g., [2], [4], [5], [6], [7], [11]). One of them goes as follows. An
operator U acting on a Hilbert space H is a bilateral shift if there exists an infinite
family {W,,} indexed by Z of nonzero pairwise orthogonal subspaces of H such that
H = ,, Wn (ie., the orthogonal family {W,,} spans H) and U maps each Wi,
isometrically onto Wy,4+1. This ensures that Ulw,, : Wy, — W41 is a surjective
isometry (i.e., a unitary transformation) so that the subspaces W, are all unitarily
equivalent and their common dimension is the multiplicity of U. It is readily verified
that U is unitary and W) is U-wandering. Therefore, W, is a generating wandering
subspace for U, and the multiplicity of U is precisely the orthogonal dimension of
Wo. Observe that Wy is separable if and only if H is, and recall that a shift of
multiplicity g (where p is any cardinal number) is the direct sum of p shifts of
multiplicity one. Here is a straightforward corollary of Theorem 1.

Corollary 1. Suppose U is a bilateral shift acting on a Hilbert space H. Let {eq}
be an orthonormal basis for Wy indexed by T'. Then (a) H admits the decomposition

H =P Ha,

where each Ho = \/,, U™eq (a separable subspace of 'H generated by the one-dimen-
sional space span{ey}) reduces U so that

U=,

with Uy = Uly,,. Moreover, (b) each U, is a bilateral shift of multiplicity one
acting on H,.

Proof. Part (a) is an immediate consequence of Theorem 1, and part (b) is readily
verified once Uy frm o = Umtle, = fm+1,a for every m in Z. Thus each U, shifts
the Z-indexed orthonormal basis { fi,, } for each H,, and therefore U,, is a bilateral
shift of multiplicity one on H,,. O

Consider the above setup where U is a bilateral shift on H and Wy =/ eq is
a generating wandering subspace for U. Recall that W,,, = U™W, and put

HE =\ W
k€N

Np is the set of all nonnegative integers. This is a subspace of H spanned by the
orthogonal (W,, L W, for m # n) sequence of subspaces {W},}. Thus we may write

H' = P We.
k€N
It is known from [6] that H* = \/, .y, U kW is an irreducible-invariant subspace
for U (which means that H* is U-invariant but not U*-invariant) and, conversely,
if M is an irreducible invariant subspace for U, then there exists a wandering sub-
space W for U such that M = vkeNo U*W. Now, for each a in T, set

HE = \/ Uke,.
keNg



6 C.S. KUBRUSLY AND N. LEVAN

Each HT is a separable (spanned by a countable set) subspace of H generated by
the one-dimensional space span{e,}, which is clearly U-invariant. But none of
them reduces U (i.e., none of them is U*-invariant). Indeed, since U* is invertible
and {U™e,} is an orthonormal set (cf. Propositions 1 and 3),

UHE=\/UUrea=\/U""ea 2@ U 'ea = Utea® @ Ukeq = Utea®H,
keNy keNy keNg keNg

and so U*H} € HY (since U*e, # 0). Consider the family {HI} indexed by T

Corollary 2. {H}} is a family of pairwise orthogonal irreducible-invariant sub-
spaces for U which decomposes the irreducible-invariant subspace H™ :

Ht=PH.

Proof. {e,} is an orthonormal basis for Wj. It follows by Proposition 3 that {U”e, }
is an orthogonal family of vectors, and so {H_} } is an orthogonal family of subspaces
(see proof of Lemma, 1). Moreover, it also follows that H* = \/, .y, U" V/, €q, and
hence H* = V/;.cn, Va Uke, by Proposition 1. But {U¥e,} is an orthonormal basis
for the Hilbert space \/ kaU *e. Thus the same argument as in proof of Theorem

1 (unconditional convergence of the Fourier series) yields the desired result; that is,
HY = Vo Vien, Urea = Vo HE = @, HE since HY L Hj whenever a # 8. O

For applications of these decompositions in wavelets theory the reader is referred

to [10] and [9] (also see [1]).

o
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