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SHIFT REDUCING SUBSPACES AND
IRREDUCIBLE-INVARIANT SUBSPACES GENERATED BY
WANDERING VECTORS AND APPLICATIONS

CARLOS S. KUBRUSLY AND NHAN LEVAN

ABSTRACT. We introduce the notions of elementary reducing subspaces and ele-
mentary irreducible-invariant subspaces—generated from wandering vectors—
of a shift operator of countably infinite multiplicity, defined on a separable
Hilbert space H. Necessary and sufficient conditions for a set of shift wan-
dering vectors to span a wandering subspace are obtained. These lead to
characterizations of shift reducing subspaces and shift irreducible-invariant
subspaces, as well as a new decomposition of H into orthogonal sum of ele-
mentary reducing subspaces. Applications of elementary reducing subspaces
to Wavelet Expansion, and of elementary irreducible-invariant subspaces to
Wayvelet Multiresolution Analysis will be discussed.

1. INTRODUCTION

Let U: H — H be a linear bounded operator on a separable Hilbert space H—

with inner product (-,-) and norm || - ||. A closed subspace W of H is called wan-
dering subspace for U, or simply, U-wandering, if [4, 12],

(1.1) W LU™W, m>0.

If the operator U is unitary, then (1.1) is equivalent to,

(1.2) U™W LU™W, Ym,m' €7 whenever m #m'.

Similarly, w € H is a U-wandering vector if it spans a U-wandering subspace [11].
We now recall the “Wandering Subspace” definition of Hilbert space shift oper-
ators [4, 12]. Note: by a “shift” we mean a “bilateral shift”.

Definition 1. A shift U : H — H is a unitary operator for which there is a wan-
dering subspace W such that H admits the “wandering subspace decomposition”

(1.3) H=EUmw.

MEZL
The wandering subspace W is then called generating and its dimension is the mul-
tiplicity of U.

In the following we will be dealing with shifts of countably infinite multiplicity.
What is interesting is the fact that the mutually orthogonal subspaces {U™W},ez
are neither U-invariant nor U*-invariant. Moreover, they do not even include any
U-invariant or U*-invariant subspace. Hence, they can serve as building blocks for

Date: September 2003.

2000 Mathematics Subject Classification. 42C40, 47A15.

Key words and phrases. Wavelet; scale and time-shift details; shift-wandering subspace de-
composition; shift reducing subspaces decomposition.

First author’s work supported in part by Brazilian National Research Council (CNPq).

1



2 CARLOS S. KUBRUSLY AND NHAN LEVAN

shift reducing subspaces, as well as for shift irreducible-invariant subspaces. Also,
it is worth noting that a shift wandering subspace cannot be reducing, while a shift
reducing subspace cannot be wandering.

An invariant subspace can be uniquely decomposed into direct sum of an irre-
ducible invariant subspace and a reducing subspace [4]. In this paper we present an
“elementary” characterization of shift reducing subspaces, as well as that of shift
irreducible-invariant subspaces. Our characterizations are elementary in the sense
that they neither rely on the functional calculus of normal operators [5], nor on the
functional representation of shifts [4], but are based on shift wandering vectors.

Let U: 'H — 'H be a shift, and let W be a U-wandering subspace. It is easy to
see that the subspace

(1.4) M= \/ U™W,

m=0

is U-irreducible-invariant [4]. More is true. Halmos [4] has shown that, if M is a
U-irreducible-invariant subspace, then there is a U-wandering subspace W which
is such that M = \/>>_ U™W. Similar result can be stated for U*-irreducible-
invariant subspaces. Our characterization of shift irreducible-invariant subspaces
begins with Halmos’ results. We then show that a U-irreducible-invariant subspace
can be represented by elementary irreducible-invariant subspaces—generated from
U-wandering vectors.
Let {¢n}nez C H be an orthonormal set and define

ne”Z

It is easy to see that if W is U-wandering, then so are the vectors {¢, }nez. The
converse is not true! It turns out that a sufficient condition for the orthonor-
mal U-wandering vectors {¢,, }nez to span a U-wandering subspace W is that the
elementary U-reducing subspaces be orthogonal. This is shown in Theorem 1. The-
orem 2 gives a decomposition of shift reducing subspace into an orthogonal sum
of elementary reducing subspaces. In addition to the familiar wandering subspace
decomposition (1.3) of H, we show that H can also be decomposed into an orthogo-
nal sum of elementary reducing subspaces. These are developed in Section 2, while
application of shift elementary reducing subspaces to Wavelet Expansion is taken
up in Section 3. Section 4 discusses representation of shift irreducible-invariant
subspaces in terms of elementary irreducible-invariant subspaces. Finally, Section
5 connects shift elementary irreducible-invariant subspaces to shift outgoing and in-
coming subspaces, as well as to Wavelet Multiresolution Analysis (MRA). We then
show a decomposition of the Wavelet MRA Time Operator [1] into “elementary”
Time Operators.

We close the paper with a discussion on advantages of “representation-free”
Hilbert space shift operators which is the “icon” of our paper.

2. SHIFT ELEMENTARY REDUCING SUBSPACES

Let U: 'H — H be a shift of countably infinite multiplicity. We begin with the
following lemma.

Lemma 1. Let W be as defined by (1.5).
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(i) If

(2.1) Wi :=U™W=U"\/ ¢n, mez,
nez

then

(2.2) W=\ U™, meL.

nez

(ii) Moreover, if W is a U-wandering subspace, then

(2.3) U™, L U™ by,  whenever m#£m', Vn,n' €Z.
In particular,

(2.4) U™, L Um/d)n, whenever m#m', VYn¢€LZ.
(i.e., ¥y, for n € Z, are U-wandering vectors).

Proof. (i) Recall that

(2.5) Umspan{ vy tnez = span{U"¢p tnez, m € Z,
and

(2.6) U™ Span{tn bnez. € Umspan{tn ) ez
since U™ is continuous ([5], Problem 3.46). Moreover,

(2.7) Wn{@bn}nez = U™span{¢n fnez

because U~ is continuous—inverse image of closed sets are closed. Therefore, by
(2.6) and (2.7),

Umspan{iﬁn}nez g Umspan{wn}nel g Umspan{d}n}nez = Umspan{"/]n}neﬂ
Hence
(28) Umspan{wn}HEZ = Umspan{wn}nez~

It then follows from this and from (2.5) that

U™span{¢n}tnez = U™span{yn}nez = Span{U™ ¢y }nez.
Thus (2.2) is proven.
(ii) We have

U, eU™W, ¥Ym,neZ

by (2.1). Therefore, for arbitrary m, n and m/’,
U™, LU™W, whenever m #m’,

by (1.2)—since W is U-wandering. Hence

Uy, LU, Vn' €Z,
by (2.2). In particular,

U™p, L U™, whenever m#m/, VneZ,

(i.e., ¥y, are U-wandering vectors). This finishes the proof. |
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Lemma 2. Define the elementary reducing subspaces
(2.9) Hp:=\/ U™, nel.
mEZ
If
H, L H, whenever n#n',
then ,
U™, L U™ ,, whenever n#n', ¥Ym,m €Z.

Proof. We have by assumption and by definition of H,,,

\/ Uky, L \/ Uk,  whenever n #n'.

kez keZ
But, for each m and n,

U € \/ Urthy.

_ kez
Similarly, for each m’ and n’,

U™ b €\ Ut
kEZ
It then follows that

U™p, L U™, whenever n#n', Vm,m €Z,
and the Lemma is proven. O
We are now ready to prove the following theorem.

Theorem 1. Let U : 'H — H be a shift of countably infinite multiplicity, and
{Un}nez be an orthonormal set in H. Let W be spanned by {n}nez, and H,,
n € Z, be spanned by {U™p tmez.

(i) If W is a U-wandering subspace then ,, n € Z, are U-wandering vectors.
Moreover, the elementary reducing subspaces H,, n € Z, are mutually orthog-
onal.

(ii) If vn, n € Z, are U-wandering vectors, and Hy, n € Z, are mutually orthog-
onal, then W is a U-wandering subspace.

Proof. The first part of part (i) is already covered by Lemma 1(ii), while orthogo-
nality of the subspaces H,, n € Z, follows readily from (2.3):

U™p, L U™ ,, whenever m#m/, Vn,n €Z,
and since for m = m’ we already have v,, L 1,,/, whenever n # n’'.

For part (ii) we first note that, it follows from Lemma 2 and from the assumption
that v,, are U-wandering vectors,

U™y, L U™, ¥Yn,n' €7, whenever m#m'.

Therefore,
U™, L \/ U™y, VneZ, whenever m#m'.
kez
Hence,
\/ U™y, L \/ U™, whenever m #m/,
keZ kez
or

U™W L U™W, whenever m #m';
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i.e., W is U-wandering. This completes the proof of Theorem 1. O
A consequence of Theorem 1 is:
Theorem 2. Let M,. be the closed U-reducing subspace
(2.10) M=\ U™W,
mez

where the U-wandering subspace W is spanned by an orthonormal set {{n}nez.
Then

(2.11) Mie = P Ha,

neE”L
where Hy,, n € Z, are the elementary reducing subspaces spanned by {U™Yn }mez,
n € 7.

Proof. First, recall that M,.. in fact reduces U since it is clearly invariant for every
power of U, and since U* = U~!; thus it is invariant for U and U*, and hence
reduces U. Now we have

(2.12) Mpe =\ T"™W=\/ W, =\/ \ U™¢n

meZ MEZL mEZ nEL
by Lemma 1(i); see (2.1). Next recall that, since H,, L H,, for n # m (Theorem 1),

213 \/ U%nz( i \/ U’"wn) ~ é \/ U™, = é Mo,

n€Z meZ n=—00 meZ n=—o00 meZ n=-—oo

where 2 means unitarily equivalent. Similarly, since W,, L W,, for n # m, by (1.2),
(2.1) and (2.2), it also follows that

14) \/ \ ume, = ( i \/ Ui é \/ U™, = é Wi

meZ ne’ m=—00 nez m=—00 nez m=—o00

1%

But U is a unitary operator so that {U™ %, }m nez is an orthonormal basis for the
Hilbert space \/,, ,,cz U™y, according to Lemma 1(ii) and Lemma 2. Thus, by
unconditional convergence of the Fourier Series,

(2.15) V VU =\ U=\ \ U

mEZ neZ m,n€”’ n€Z meZ
Therefore,
DW= M. = B,
meZ neZ
This finishes the proof of the theorem by writing = for &, as usual. O

The next proposition follows at once from Theorems 1 and 2.

Proposition 1. (i) If the U-wandering subspace W of Theorem 1(i) is also gen-
erating then, in addition to the U-wandering subspace decomposition,

(2.16) H=EPumw,
meZ
and ‘H also admits the elementary reducing subspaces decomposition,

(2.17) H =P Ha

neE”Z
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Hence, the operator U admits the decomposition

(2.18) U= é U,

n=—oo
where each U, := U|H,, is a shift of multiplicity 1 and whose generating-wandering
subspace is span{y, } = \/ Uy.

(ii) If, in addition to the conditions of Theorem 1(ii), the subspaces H,, n € 7Z,
span H, then the U-wandering subspace W is generating.

Proof. If W is U-wandering and generating then the subspace M, is all of H.
Therefore (2.17) follows readily from Theorem 2, while (2.18) is self-evident. For
Proposition 1(ii) we first note that, by Theorem 1(ii), W is already U-wandering.
It remains to show that it is generating. Suppose H,, n € Z span H, and recall
that ‘H,, L H,, for n #m. Then

(2.19) H=PH. =P VU ™=\ Ut
nez n€Z meZ n,mez

Therefore, as in the proof of Theorem 2,

(2.20) H=EUmwW;
meZ
i.e., W is a U-generating-wandering subspace, which completes the proof. O

Recall that a unitary operator is a direct sum of infinitely many unitary operators
[10], which happens in particular for a (bilateral) shift of infinite multiplicity. Note
that this well-known result (see e.g., [10], p.46) is also evident from (2.18), as sum-
marized below.

Corollary 1. A shift of countably infinite multiplicity is a direct sum of infinitely
many shifts of multiplicity 1.

It is plain from (2.16) that, each h € H can be written as,

(2.21) h= > Ulwp,
where o
o0
(2.22) wm €W and Z |wml|? = ||R||
Therefore, -
(2.23) Uh = Y U™ wy, = > U™ waor.
m=—00 m/=—o0

Let ®: H — (?(—00, 00; W) be the map defined by
(2.24) Oh = {wpmdme.

Then it is plain that ® is unitary, and the shift U goes into the right shift S, on
02 (—00,00; W),

(225) Sr{wm}mEZ = {wm—l}mEZ-
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The shift action of U on H, under the decomposition (2.17), is transparent since

(2.26) h = i hn, VheH,
where T

(2.27) hn, € H, and i el = ||R|%
Therefore, S

(2.28) Uh= i Uhy,.

Then, since each H,, is reducing, the action of U takes place on H,. Now let us
expand h,, in terms of the orthonormal basis {U™y, }mez of H,. We have

(2.29) hn= 3 (b, U™n) U™ € M.

Hence, -

(230)  Uhp= Y (ho,U™0)U™ = 3" (b, U™ 71, ) U™ 4.
Thus U|H,, := U, goes into the right shift S,,, of multiplicity 1, defined by
(231) Sn{<hn7 Um¢n>}m€Z - {<hna Umilwn>}m€Za n € 7.

Consequently, U goes into the shift S which is direct sum of infinitely many shifts
S, of multiplicity 1-—on the Hilbert space ¢? ( —00,00; \/{{hn, Umiﬁn)}mez), n ez,

o0
(2.32) S:= P S
n=—oo
3. SHIFT ELEMENTARY REDUCING SUBSPACES IN WAVELET EXPANSION

We now turn to application of elementary shift reducing subspaces H,,, n € Z,
to Wavelet Expansion.
Let D denote the dilation-by-2 operator defined on the function space £2(IR) by

(3.1) Df=g, g()=v2f2(), f()eLAR).

It is plain that D is unitary. Moreover, it is a shift of countably infinite multiplicity.
Let ¥(-) € £L2(R) and define the functions

(3-2) Un() :=(() —n) =T"¥(), neL,
where T is the translation-by-1 operator on £2(R) defined by
(3.3) Tf=g, g()=/f(()—1),

and it is also a shift of countably infinite multiplicity. Now let 9., ,,(-) be “gener-
ated” from ¢, (-) by

(3.4) () 1= D™ () = V2 9 (27()) = V2 (27 () — n).

for m,n € Z. We recall the following definition from [9].
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Definition 2. If the functions ¥y, »(-), m,n € Z, are orthonormal and span the
function space L£2(R), then (-) is called an orthonormal wavelet or, simply a
wavelet, and ¢, »(-) are called wavelet functions—generated from ().

It follows easily from the above that.
Lemma 3. Let ¥(-) € L2(R) be a T-wandering vector,
Ty(-) L T”/¢(~), whenever n#n', n,n €Z.

Then () is a wavelet if and only if the orthonormal functions ¥, (-), n € Z, defined
by (3.2), span a generating D-wandering subspace

(3.5) W) =\ vn() = \/ T"().

It follows at once from this Lemma that, for a given wavelet ¢(:) there corre-
sponds a D-wandering subspace decomposition of the function space £2(R),

(3.6) LXR) = P D"W() = D Win(¥),

meZ mEZL
where
(3.7) Wi () == D"W(), m € Z.
Therefore, any f(-) € £2(R) admits the orthogonal decomposition
(3.8) FO) =" DM wp(),

mEZL
where
(3.9) wn €W(W) and Y [lwnl? =[£I
meZ

Let Py, (y) be the orthogonal projections onto the subspaces Wy, (¢), then it
follows from (3.8) that

(3.10) Pw,.)(f()) = D" wn(-), meZ,
since, by definition, D™ w,,, € Wy, (¢)). Therefore, since D is unitary,
(3.11) Wi (-) = D* ™ Py, 4 (f(-)), meZ.

From which it follows that
(Wi (-); ¥ () = (D™ Py, ) (F()), ¥n () = (), Pw,.w) (D™ 0n(0)))-

Therefore,
since D)y, (= ¥ n(-)) already lives in W, (¢). Now, since the orthonormal set

{¥n (") }nez spans W(¢), we also have

nez
Therefore, by (3.12),

(3.14) Wi () = D (f()s Ymn()) Yal), mEZ.

ne”L
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This can be rewritten as

(3.15) Wi () =Y (D" f(),¥n(-) Ynl-), mETZ,

which implies that ner

(3.16) Win(+) = Pyy(y) (D*™f(+)), meZ.

Therefore, by (3.10),

(3.17) Py, ) (f(5)) = D™ wy(-) = D™ Py (D*™ f(+)), m€EZ,
(&M>PM%wﬁor=§;Uc»mmx»¢%mcw:DmemeMvo»,rnez

In Wavelet Theory [9], the subspace W,,(¢) is called “scale-2™-time-shift detail
subspace”, while PWm(w)(f(')) is “scale-2™-time-shift detail variations of f(-)”.

The function D™ f(-) (= ﬂmf(2m(-)) is referred to as f(-) at scale 2™, while
D*™f() (= #f(%())) is f(-) at resolution 2. We conclude from (3.20):

Proposition 2. Let 1(-) € £L2(R) be a wavelet. Then the projections Py, () and
Pyyy) are unitarily equivalent, with D™ acting as the equivalence operator,

Py, ) = D" Py D™, meZ.
From which it follows that
Py, i) = DPw, 4y D", m €L

In other words, the scale-2™1-time-shift detail variations of f(-) is equal to the
scale-2™-time-shift detail variations at scale 2 of f(-)—at resolution 271.

We have from (3.10) and (3.16),
mEZ neZ
This is the “usual” wavelet expansion over all scales of time-shift detail variations

of f(+) € L2(R).

We now turn to another type of expansion which is a consequence of the “el-
ementary D-reducing subspaces decomposition” of the function space £2(R). Let
¥(-) € L2(R) be a wavelet, then we have, by Proposition 1,

(3.20) LR =PH. =P \/ D"¢n().

nez n€Z meZ

Hence, f(-) € £L2(R) now admits the orthogonal decomposition,

(3.21) 16 =S ha(o),
nez

where

(3.22) hn € Hy and > [lhnl* =[£I,
nez

and

(3.23) hn(-) = Pr, (f()), ne€Z.
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Here Py, is the orthogonal projection onto H,,. Therefore, since the orthonormal
set {Dmd]n(')}mel spans Hna

(3.24) ha() =D (B, D™ 40) D™ ()

or, from (3.23), met

(3.25) hn(-) = > (Pr, (f), D™ ) D™ ()

Therefore, as before, mee

(3.26) hn(-) = > {f, P, (D)) D™ ().

Consequently, met

(3.27) hn() = Py, (()) = ZZU, Gmn) Ymn(-), nEL.
me

We call the subspace H,, the n-time-shift-scale detail subspace, while Py, (f(+)) is
the n-time-shift-scale detail variations of f(-). Now, let us rewrite (3.27) as

(328)  ho() = P, (f()) = D Pu..(f()

me7Z
(3.29) = > {f, D)D)
me7Z
(3.30) = Y D™D " f ) Un(-), nEL
But meZ
(3.31) (D™ f, ) Yn(-) = Py, (D™ f ("))
Therefore (3.30) can be rewritten as
(3.32) Py, (f()) = > D™Py, D™ (f()).
meZ
It then follows from (3.28) and (3.32) that
(3.33) Py, . (f())=D™Py, D*™(f(")), m,n€Z, VY [feL*R).

We have therefore proved the following proposition.

Proposition 3. Let 9(-) € L*(R) be a wavelet. Then the projections Py, . and
Py, . are unitarily equivalent, with D™ acting as the equivalence operator,

Pil)m,n = Dmpd,o’nD*m, m e Z,
where Yo () == ¥((-) = n) = Yu(-). Therefore,
Pw”&l’” = Df:)w"””l)*7 m € 7.

In other words, the scale-2™ " -time-shift-n detail variation of f(-) is equal to the
scale-2™-time-shift-n detail variation at scale 2 of f(-)—at resolution 271,

This proposition is an analog of Proposition 2. We will have more to say about
the projections Py, (4) and Py, . in Section 5.

It follows from (3.21) and (3.27) that

n€Z meZ
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This shows that, with respect to a wavelet 1(-), a function f(-) € £2(R) is sum-
mation of all its time-shift-n-scale detail variations, as well as what we have seen
above, summation of all its scale-2"*-time-shift detail variations.

Now, for each m € Z and each n € Z,

(3.35) Win(¥) N Hn () = {m.n}-

Then, since the orthogonal complements of {¢, »n} in Wy, (¢) and in H,(¢), re-
spectively, are orthogonal, we have

(3.36) Py.,..fC) = Pw,, ) Pr,. ) [ () = P, ()P, () f ()

This implies that, for f(-) € £3(R), its “detail-variations at scale-2™ and time-

shift-n” can be obtained in two ways. Either by projecting its “time-shift-n detail-

variations” onto the “scale-2"-time-shift detail subspace,” or by projecting its

“scale-2™-time-shift detail variations” onto the “time-shift-n-scale detail subspace.”

These explain the existence of the two wavelet expansions (3.21) and (3.36).
Preliminary results of this section were reported in [8].

4. SHIFT ELEMENTARY IRREDUCIBLE-INVARIANT SUBSPACES

We now turn to shift irreducible-invariant subspaces. We begin by recalling
Halmos’ results [4], together with their “adjoint” version.

Proposition 4. Let W be a U-wandering subspace, then the subspace M, (re-
spectively, M, ;) defined by
00 —1

(4.1) M, = \/ umw (respectively, My = \/ UmW)

m=0 m=—00
is Ul(respectively, U*)-irreducible-invariant. Conversely, if M (respectively, M) is
U (respectively, U*)-irreducible-invariant, then there exists a U-wandering subspace
W so that M =\/,"_, U™W (respectively, M, := -1 Uumw).

m=—0o0

Let M;,- be U-irreducible-invariant and let WV be the corresponding U-wandering
subspace. Suppose W is spanned by an orthonormal set {t¢,, },cz. Then,

(4.2) M = {7 UmW = (7 \/ U™ .
m=0 m=0 n€eZ

Therefore, as in the proof of Theorem 2, we have

(4.3) Mir=\/ \JU™n =\ \ U"¥n.
m=0 n€Z n€eZ m=0
Define the subspaces

o0
(4.4) Hoyn =\ U™n, ne.
m=0

Here the subscript (0) means that the integer m on the right hand side ranges from
0 onward. It is evident that the subspaces {H (o) » }nez are U- irreducible-invariant.
Moreover, they are also mutually orthogonal, H ) L H()n, Whenever n # n'.
Therefore, as in the proof of Theorem 2,

(4.5) Mir = P Hio).n-

neEZ
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In exactly the same way we obtain for the U*-irreducible-invariant subspace M, ;,

(4.6) M. =EPHTY,
nez
where
—1
(4.7) H D=\ U™y, neZ,

and the superscript (—1) indicates that the upper bound of m is —1. Moreover, the

U*-irreducible-invariant subspaces {Hgfl)}nez are also mutually orthogonal.
Halmos’ results can now be restated as.

Theorem 3. A U(respectively, U*)-irreducible-invariant subspace M, (respective-
ly, M. i) admits the orthogonal decomposition

M, = @H(o),m (respectively, Mir = @HS{”),
nez ne”Z
where

[e’s} —1
Hoyn = \/ Umy, (respectively, 'Hsfl) = \/ Umz/)n), n e,
m=0

m=—0o0

are orthogonal elementary U (respectively, U*)-irreducible-invariant subspaces, and
{Vn}tnez is an orthonormal basis of the U-wandering subspace W.

Sequences of U and U*-irreducible-invariant subspaces can be generated from
M and M, 4, respectively. Such sequences play a key role in Wavelet Multireso-
lution Analysis as will be seen in the next section.

5. SHIFT ELEMENTARY IRREDUCIBLE-INVARIANT SUBSPACES IN WAVELET
MULTIRESOLUTION ANALYSIS(MRA)

We begin by recalling the “Incoming-Outgoing Subspaces” definition of shifts,
see for instance [6] and the references therein.

Definition 3. A shift U: H — H is a unitary operator for which there is an outgo-
ing (respectively, incoming) subspace V° (respectively, V) satisfying the following
conditions:

(i)> UVecCVe (respectively, (i)’ U*V'CV?),

(i) Moo UV = {0},

(i) U,._ U™V =H,
where, in (ii) and (iii), V°? can be either V° or V.

We must note that Definition 3 was, originally, the Lax-Phillips definition of
an outgoing subspace (respectively, incoming subspace) for a unitary operator U
[7]. However, since U is actually a shift, Definition 3 can simultaneously serve as
that of a Hilbert space shift operator [3]. Thus, it is appropriate to refer to it as
“Incoming-Outgoing Definition” of shifts.
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We now recall some basic facts relating incoming, outgoing, and wandering sub-
spaces of shifts.

Proposition 5. Let U: H — H be a shift, and let V° (respectively, V') be U-
outgoing (respectively, U-incoming). Then [7],

00 —1
Ve .= G?OUMW (respectively, V= @ UmW>,

where the subspace
W =VegUVve, (respectively, W:=Vig U*Vi>

is U-generating-wandering. Moreover, V° (respectively, V') is also U-irreducible-
invariant (respectively, U*-irreducible-invariant) [4].

An easy consequence of the above is:

Lemma 4. Let U: H — H be a shift and Vi be a closed subspace of H. Let
{Vp}pez be the subspaces generated from Vy by
Vps1 =UVy,  (respectively, V41 =U*V,), pé€Z.

Then {V,}pez satisfies the following properties,

(i) Vp;rol CVp, pELZ,

() MV = (0),

(i) Up=_ Vo =H,
if and only if Vi is U-outgoing (respectively, U-incoming). Similarly, if condition
(i) is replaced by

(@) Vo CVpt1, peEZ,
then {V,}pez satisfies ('), (ii), (i) if and only if Vi is U-incoming (respectively,
U-outgoing).

It follows from this Lemma that Definition 3 can be restated in terms of the
sequences of subspaces {U™V°},,cz or {U™V},,¢7 as follows.

Definition 4. A shift U: H — H is a unitary operator for which there is an outgo-
ing (respectively, incoming) subspace V° (respectively, V) satisfying the following
conditions:

(i)ye Um™ttvec Umve  (respectively, (i) Urmvic Uurmtiye,

(i)  Mype—oe UMV = {0},

(i) U.__  U™Voi=H,

where, in (ii) and (iii), V¢ can be either V° or V.

The Wandering Subspace Definition of shifts (i.e., Definition 1) can be restated,
in the spirit of Definition 4 as follows.

Definition 5. A shift U: H — H is a unitary operator for which there is a gener-

ating wandering subspace W satisfying the following conditions:
oY um™wW LU™"W, m,n€Z,
(i) Npe—oc UmW = {0},

m=—0o0

(i) U.__  U™W=H.
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Remark 1. Comparing Definitions 4 and 5 we see that the subspaces {U™V°},,.¢z
or {U™V} ez, and {U™W}ez differ only in properties (i)°¢ and (i)*. These
two properties show the difference between outgoing subspace V° or incoming sub-
space V%, and the generating wandering subspace W. Equivalence between the two
definitions are evident from Proposition 5.

To proceed, we now recall the definition of Wavelet Multiresolution Analysis
(MRA) [9], which plays an important role in Wavelet Theory.

Definition 6. A sequence of “approzimation subspaces” {Vpy($)}mez of the func-
tion space L£2(R) is a Wavelet MRA, with scaling function ¢(-), if the following
conditions hold:

(0) {¢((:) = n)}nez is an orthonormal basis of the subspace Vy(¢),

(1) Vﬂgc((b) C Vm+1(¢)7 mE Z (OI‘, Vm+1(¢> C Vm(¢)7 mE Z)a

(11) szfoo Vm(¢) = {O}’
) Um:—oo Vm(¢) = £2(R)7
(iv) v(-) € V(o) <= v(2(*)) € Vimy1(9p), meZ

(OI", U() € vm((ﬁ) — U(%()) € vm+l(¢)7 me Z)

Remark 2. Definition 6(i)-(iii) can also be expressed in terms of the projections
P,, from L£2(R) onto the subspaces V,,(¢). This was pointed out by Antoniou and

Gustafson [1]. We will have more to say about this later—in connection with the
Time Operator of Wavelet MRA.

We must note that Definition 6(0) is “particular” to wavelets and has nothing to
do with the shift operator D. It was introduced as a mechanism for constructing
a wavelet ¥(-) from a given scaling function ¢(-). Also, Definition 6(iv) can be
expressed in terms of D and D* as follows.

(5.1)  Vii1(8) = DV(¢) (01, Visr(d) = DVn(0)), m € Z.
Therefore, if Vy,41(¢) = DV, (@), then Definition 6(i) becomes
(5.2) DV (6) C Vin(9) (or, DVp(d) CTVm(d)), meZ;

i.e., V(@) is D*-invariant (or, D-invariant). Similarly, if V,,41(¢) = D*V,,(9),
then Definition 6(i) becomes

(53)  DVm(¢) C V(o)  (or, DVimy1(9) CVimt1(9), m € Z;

i.e., Vi(¢) is D-invariant (or, D*-invariant).

‘We therefore conclude from Definition 6 and Lemma 4:

Proposition 6. A Wavelet MRA—with scaling function ¢(-)—is a sequence of
decreasingly-nested (respectively, increasingly-nested) subspaces {Vin(d)}mez of
L2(R); i.e.,
Vm(¢) - Vm+1<¢) (TBSPBCUUGZ?J, Vm+1(¢) - Vm<¢))’ me Z,
generated, either from,
(i) a D-incoming subspace Vi($) by
(5.4) Vo(d) :=V'(9), Vp(d) = D™V($) <= Viny1(9) = DVi(), m €,

(respectively, by V(o) = D*mvi((b) <= Vpt1(d) = D*V(0), meZ),

or from,
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(ii) a D-outgoing subspace V°(¢) by
(5.5) Vo(@) :=V°(9), Vin(d) = D"V (¢) <= Vint1(d) = D*Vi(0), meZ,

(respectively, by Vi (¢) = D™V5(¢) <= Vit1(¢) = DV (¢), m e Z),
where V¥(¢) or V°(¢) are spanned by the orthonormal basis {¢((-) — n)}nez.

We shall refer to a Wavelet MRA generated from an incoming subspace (re-
spectively, an outgoing subspace) as an Incoming Wavelet MRA (respectively, an
Outgoing Wavelet MRA). From now on, without lack of generality, we only consider
Incoming Wavelet MRA.

Assumption 1. Let {Vin(¢)}mez be an Incoming Wavelet MRA—with incoming
subspace V*(p) generated from a scaling function ¢(-)—satisfying,

(5.6) Vol(o) :=V(¢) = \/ &(() —n),

nez
(5.7) Vimi1(6) = DV (¢) = D™V (¢), m € Z,
and
(58) Vm((b) C Vm+1(¢)7 m € Z.

We have, by Propositions 5,

Vo(9) := V().
Then, by Proposition 6,
-1

(5.9) Vo() :=V'(¢) = € D*W(v),

p=—00

where, as before, the D-generating-wandering subspace W(%) is spanned by the
orthonormal wavelet functions {t,,(-) := ¢¥((-) — n) }nez—generated from a wavelet

7/}()7
(5.10) W) == \/ ¢(() —n).

nez
It then follows that
m—1
(5.11) V(@) = D™V (¢) = ) DPW(¥).
p=—00

Remark 3. We must note that equation (5.9)—without the functions ¢(-) and ¢(-)

is the “usual” representation of an incoming subspace for a shift operator which, in
our case, is the dilation-by-2 operator D. However, with the shift operator D and
only when 9(-) is an orthonormal wavelet, then W is characterized by (5.10). As
a consequence, in (5.9) the incoming subspace Vy is now “depending” on v (-) and
is represented by the orthogonal subspaces {DPW ()} _oo<p<—1. However, with
equation (5.6), or Definition 5(0), the subspace V) is also required to be spanned
by the orthonormal set {¢((-) — n)}nez. Thus, in Wavelet Theory, the incoming
(or, outgoing) subspace Vy depends on both a wavelet 1(-) and a scaling function
¢(+). This is the key idea which resulted in a procedure for constructing a wavelet
1(+) from a given scaling function ¢(-) [9].
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We now obtain an alternate representation for the approximation subspaces
{Vim(®)}mez. First, by Lemma 1(i), (5.9) can be rewritten as

(5.12) Vo) =Vig) = @\ DP(() —n).

p=—00 nEZ
Then, since V*(¢) is D*-irreducible-invariant, it follows from Theorem 3 that

(5.13) Vo(¢) = Vi(¢) = P H (@),

nez
where, as before,
-1

(5.14) H (@) = \/ DPY(()—n), neZ

p=—00
Next, we have from (5.7),
(5.15) Vin(9) = D™Vo(¢) = P D" HV (W), meZ.

nez
But, by (5.13),

(5.16) DmHCD(@)= \/ D™Pg(()—m)= \/ D*Y(()—n), mnel

p=—00 v=—00

Let us define the D*-irreducible-invariant subspaces

m—1
(5.17) H D (@) = D HTV () =\ DPy(() = n), m,neZ.
p=—00
Then it follows from this, (5.16), and (5.15) that
(5.18) Vn(¢) =P H (W), mel
nez

Now it is plain that, for each fixed n, the subspaces {H%m)(z/))}mez are also nested,

(5.19) H™ () CHD (), mel.
Moreover, by (2.9), they are subspaces of the elementary reducing subspace H.,,
(5.20) Mo :=\/ D*(() —n), nez,

PEZ

which we have referred to as a n-time-shift-scale detail subspace. Therefore the
subspace H&m)(d)) can be called a n-time-shift-scale-2™ detail subspace. It is easy

to see that, for each fixed n, the subspaces {H%m)}mez—of H,,— also inherit the
Wavelet MRA properties of the original Wavelet MRA {V,,(¢)}mez on L£2(R).
We summarize the above in the next proposition.

Proposition 7. Let {V;,(¢)}mez be an Incoming Wavelet MRA satisfying As-
sumption 1. Then the approximation subspaces { Vi (¢P)}mez admit the orthogonal
decomposition

(5.21) V() :=\/ D"¢((-) —n)) = P H (), mez,

nez ne”L
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where the elementary D*-irreducible-invariant subspaces {'H%m)(w)}mez, are de-
fined by (5.17)

(5.22) H™M @)= \/ D"(()—n), mneZ

p=—00

Moreover, for each fixed n, the subspaces {H%m)}mez form an “elementary” Wave-
let MRA on the elementary reducing subspace H,,.

We close the paper with a decomposition of the Time Operator of Wavelet MRA.
First, recall that Definition 6 is equivalent to [1].

Definition 7. Let {V,,(¢)}mez be closed subspaces of the function space £2(R),
and let P,, be the projections onto V,,(¢). Then {V,,(¢)}mez is a Wavelet MRA,
with scaling function ¢(-), if the following conditions hold:
(0) {#((*) = n)}nez is an orthonormal basis of the subspace Vy(¢),
(i) Pum < Prs1,
) Poo=limu_. oo Py =0,
(lll’) P+oo = hmm_, 400 Pm = I,
) Pmy1=DP,D*.
(In (i) < means inclusion of ranges; in (ii’) and (iii’) we have strong convergence).
Antoniou and Gustafson [2] have shown that this Definition not only defined a

Wavelet MRA, but it also allowed them to define the Time Operator of Wavelet
MRA, as the self-adjoint operator 7 with dense domain D(7),

(5.23) T:=> m(Pmyr— Pn).
MmEZL

We have seen in Propositions 2 and 3 that the projections Pyy,  (y) and Py,
also have property (iv’) of Definition 7,

(524) PWm+1(1P) = DPWm(w)D*, m € 7.
and
(5.25) P, .. =DP, D, meL

These suggest that Py, (y) and Py, should, somehow, be “related” to the Time
Operator 7. Indeed, since

(526) Pm+1 - Pm = PWm('LZJ)v

and since each subspace W,,(¢) is spanned by the orthonormal set {m, n(-) tnez,
it follows from (5.23) that [2],

(5.27) T = Y mPw,wm(f0),  f()eLiR),
mEZ
meZ nGZ

(5.29) = > mYy Py (f0)
mEZ nez

Equations (5.27) and (5.29) provide connections to the Time Operator 7 of the
projections Py, (1) and Py, .. More is true. As in the proof of Theorem 2, the
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right hand side of (5.28) can be rewritten as

(530) T =D Y m{f() Ymn()) Ymn(),  f(-) € L2(R),

neZ meZ
or,

(5.31) T =EPT.r0),

ne”L

where 7,, are defined by

(5.32) Tf() =D m{f () Ymn() Ymn() = Y m Py, f().

meZ meZ

We therefore conclude that:

Proposition 8. The Time Operator T of Wavelet MRA admits the decomposition

(5.33) T=PT.,

ne”L

where T, —called “elementary” Time Operators—are defined on H,, by

(5.34) T, = Z mPy, ., neEl.
meZ

Consequently, each wavelet function ¥, »(-) is age-eigenvector [2] of T,.

We note that the Time Operator 7, agrees with the fact that, from Proposition
7, the subspaces {HS{”) }mez form a Wavelet MRA on H,.

We refer to [1] and [2] for further results on Time Operator of Wavelets, and
connections between Wavelet Theory and Wandering Subspace Theory, and other
parts of Mathematics.

Finally, we must note that our approach to shifts is “non-conventional”, in the
sense that, instead of dealing with specific shift representation on £2(—oc, co; W)
such as that of (2.25)

Sr{wm}mGZ = {wm—l}m€Z7

we deal with the shift U on H first, via its wandering subspaces W,,, then via
its elementary reducing subspaces H,. An advantage of this “representation-free”
approach, of course, is the fact that we can get back to S,., via the vectors U™,
which are actually “age eigenvectors” of the associated Time Operator 7. Our key
results (Theorem 1 and Proposition 1) are clearly consequence of the representation-
free approach. These results cannot be derived from the representation (2.25), even
though S, is related to U via the unitary operator ® defined by (2.24). This is due
to the fact that the conventional approach does not allow one to connect shifts with
Time Operator or with Wavelets, since it has nothing to do with the age eigenvectors
U™, which, in the case of wavelets, are precisely the wavelet functions ¥y, ().
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