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CONTRACTIONS SATISFYING THE ABSOLUTE VALUE
PROPERTY |A|? < |A2|

B.P. DUGGAL, L.H. JEON, AND C.S. KUBRUSLY

ABSTRACT. Let B(H) denote the algebra of operators on a complex Hilbert
space H, and let U denote the class of operators A € B(H) which satisfy
the absolute value condition |A|2 < |A2|. Tt is proved that if A € U is a
contraction, then either A has a nontrivial invariant subspace or A is a proper
contraction and the nonnegative operator D = |A2| —|A|? is strongly stable. A
Putnam-Fuglede type commutativity theorem is proved for contractions A in
U, and it is shown that if normal subspaces of A € U are reducing, then every
compact operator in the intersection of the weak closure of the range of the
derivation d4(X) = AX — X A with the commutant of A* is quasinilpotent.

1. INTRODUCTION

Let H be an infinite-dimensional complex Hilbert space, and let B(H) denote the
algebra of all operators on H (i.e., of all bounded linear transformations of H into
itself). For any operator A in B(H) set, as usual, |A| = (4*A)? and [A*, 4] =
A*A — AA* = |A]? — |A*]? (the self-commutator of A), and consider the following
standard definitions: A is hyponormal if |A*|2 < |A|? (i.e., if [A*, A] is nonnegative
or, equivalently, if ||A*z| < ||Az| for every z in H), p-hyponormal (for some
0 < p <1)if |A*|?? < |A|?P, quasihyponormal if 0 < A*[A*, A]A, and paranormal
if ||Az||? < ||A2%z| ||x|| for every x in H. Let U denote the class of operators
A satisfying the absolute value condition |A|? < |A2|, and let H(1), H(p), Q(1)
and I denote, respectively, the classes consisting of hyponormal, p-hyponormal,
quasihyponormal and paranormal operators. Then
H(l)col)cUcCK
and
H(1) C H(p) cU C K,

where all the inclusions are proper [8]. The class U has recently been studied in a
number of papers (see [10], [16], [17] for further references). This note continues
this study, concentrating mainly on contractions in U. It is proved that if A is a
contraction (i.e., if ||A|| < 1, which means that ||Az| < ||z|| for every z in H) in U,
then either A has a nontrivial invariant subspace or A is a proper contraction (i.e.,
| Az|| < ||z|| for every nonzero x in H) and the nonnegative operator D = |A2?|—|A|?
is strongly stable (i.e., D™ —*> 0; the power sequence {D"} converges strongly to
0). A Putnam-Fuglede type commutativity theorem is proved for contractions
A in U. We also prove that if normal subspaces of A € U are reducing, then
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every compact operator in the intersection of the weak closure of the range of the
derivation d4(X) = AX — X A with the commutant of A* is quasinilpotent.

In the following we shall denote the spectrum, the point spectrum, the ap-
proximate point spectrum and the spectral radius of A € B(H) by oc(A), o,(A4),
oap(A) and 7(A), respectively. The joint point spectrum of A, ¢,,(A), is the set
{Aeop(A): (A—=XN)x=0<= (A—N)*x = 0}. We shall denote the set of isolated
points of o(A) which are eigenvalues of A € B(H) of finite algebraic multiplicity
(respectively, finite geometric multiplicity) by ogo(A) (respectively, ao(A)). A con-
traction A is said to be completely nonunitary if there exists no nonzero reducing
subspace M for A such that A|p; is unitary, and an operator A is said to be pure
(i.e., completely nonnormal) if there exists no nonzero reducing subspace M for A
such that A|ps is normal. A contraction A is of class Cy. if lim,,_, ||A™z|| = 0 for
every z in H (i.e., if A" - 0, which means that A is a strongly stable contraction);
and it is said to be of class Cy. if lim,_, [|[A™z|| > 0 (equivalently, if A"z /0) for
every nonzero = in H. Classes C.g and C.; are defined by considering A* instead
of A, and we define the classes Cp (for a,3=10,1) by Cop = Co- NC.5. A Coo-
contraction A is said to be of class Cy if there exists an inner function u such that
u(A) = 0. (See [2] and [14] for more about these classes.)

2. AN INVARIANT SUBSPACE THEOREM

The operators A € U being paranormal, a number of the properties of A € U follow
from those of paranormal operators. Thus given A € U:

1. Aisnormaloid (i.e., 7(A) = ||A]|) and the nonzero eigenvalues of A are normal
eigenvalues (i.e., if 0 # A € 0,(A) and x € H is a vector such that Az = Az,
then A*z = \x) [5, 6].

2. If 6(A) is countable (in particular, if A is compact), then A is normal [12].

A satisfies Weyl’s theorem (so that ogo(A4) = 0o(A)) [5].

4. If A is a completely nonunitary contraction, then A is of class C.¢. Further-
more, if A is an injective pure contraction and the defect operator (1 — A*A)2
is of Hilbert-Schmidt class Cs, then A is of class Cyg [6, 7].

5. A can not be supercyclic [4].

e

There are, however, properties that operators A € U have, which they share with
hyponormal operators and which are not shared by paranormal operators. (Thus,
whereas the tensor product A ® B of operators of A, B € U is again in U [10], the
tensor product of paranormal operators is not necessarily a paranormal operator
[13].) Recall that a contraction A is said to be a proper contraction if || Az|| < ||z||
for every nonzero x in H. A strict contraction (i.e., a contraction A such that
||A]] < 1) is a proper contraction, but a proper contraction is not necessarily a strict
contraction (although the concepts of strict and proper contraction coincide for
compact operators). It was recently proved in [11] that if a hyponormal contraction
A has no nontrivial invariant subspace, then (a) A is a proper contraction and (b)
its self-commutator [A*, A] is a strict contraction. We start by extending item (a),
and giving a counterpart of item (b), to contractions A in U; but first we need the
following auxiliary result.

Proposition 2.1. If A is a contraction in U, then the nonnegative operator D =
|A%| — |A|? is a contraction whose power sequence {D™} converges strongly to a
projection P, and AP = 0.
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Proof. Take any x in H and any nonnegative integer n. If A € U, then 0 < D. Let
R = D7 be the unique nonnegative square root of D. Recall that || |A|2]|2 = ||A|
and || |A|z|| = ||Az]|| for every x € H, for all A in B(H). If, in addition, A is a
contraction (so that || [A2]2]|2 = ||A2|| < 1), then

(D"'asz) = |R™a|? = (DR"w; Rz) = ||| A%2 R"|” — || |A| R
< |[B"a|? - [|[AR"z|* < |[R"x|® = (D" ; ).

Thus R (and so D) is a contraction (set n = 0), and {D"} is a decreasing sequence
of nonnegative contractions. Hence {D™} converges strongly to a projection (i.e.,
to a self-adjoint idempotent), say, P. Moreover,

m m
SR )P < Y (IR 2| = 1R 2]2) = al)? — |R™a]? < 2]
n=0 n=0

for all nonnegative integers m and every z in H. Therefore, || AR™z|| — 0 as n — oo,
and hence

APz = Alim D"z = lim AR?*"z = 0,
for every z € H, so that AP = 0. O

Theorem 2.2. If a contraction A in U has no nontrivial invariant subspace, then
(a) A is a proper contraction and (b) the nonnegative operator D = |A?| — |AJ? is
a strongly stable contraction (so that D € Cyp).

Proof. (a) If A €U, then |A|? <|A?|. By the Schwarz inequality,
[Az]* = ([APz;2) < (|4%|z52) < || |A%[a]l 2]l = [[A%]) |l

for every x in H. Put M = {z € H: ||Az|| = ||A]| ||=||}, which is a subspace of H
(reason: M = ker(|A|?> — ||A||?), which is clearly a closed linear manifold of H). If
x lies in M, then the above inequality ensures that

1A Azl flll = [|Az(* < [| A% l=] < Al [ A=] [|=]],

and hence ||A(Az)| = || A|| ||Az|| so that Az lies in M. That is, if A € U, then M is
an invariant subspace for A. Now suppose A in U is a contraction. If A is a strict
contraction, then it is trivially a proper contraction. If A is a nonstrict contraction
(i.e., if ||Az|| < ||z|| for every z € H and ||A|| = 1) and has no nontrivial invariant
subspace, then M = {z € H: ||Az|| = ||z||} = {0}. (Actually, since A has no
nontrivial invariant subspace, and since M is an invariant subspace for A, it follows
that M must be trivial: either M = {0} or M = H; but if M = H, then A is an
isometry, and isometries have nontrivial invariant subspaces.) Thus A is a proper
contraction (i.e., M = {0} implies ||Az|| < ||z|| for every nonzero = € H).

(b) Let A be a contraction in Y. Proposition 2.1 says that D is a contraction,
D" =5 P, and AP = 0 so that PA* = 0 (recall: P is self-adjoint). If A has no
nontrivial invariant subspace, then A* has no nontrivial invariant subspace as well.
Since ker P is a nonzero invariant subspace for A* whenever PA* = 0 and A # 0,
it follows that ker P = H. Hence P = 0 so that D™ - (. O
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Remark 2.3. In general, proper contractions and strongly stable contractions are
not related (there exist Cyo-contractions that are not proper, and there exist proper
contractions of class C1), but every proper contraction is weakly stable [11]. Since
weak stability coincides with strong stability for self-adjoint operators, it follows
that every self-adjoint proper contraction is strongly stable, and hence (since it is
self-adjoint) of class Cgo. Clearly, D = |A?| — |A|? is self-adjoint for every operator
Ain B(H). If D is a proper contraction, then it is of class Cpp. Is the converse
true? Yes, it is. If {D™} converges strongly to 0, then D is a proper contraction.
Indeed, if a self-adjoint operator D is strongly stable, then ||D| = r(D) < 1 so
that D? is a nonnegative contraction, and so is (1 — D?). If the contraction D

is not proper, then there exists a nonzero x in H such that ||Dz||?> = ||z||?, and
hence ((1 — D?)z;z) = 0. Thus (1 — D?)2z = 0 so that D%z = x, which implies
|D?"z|| = ||z|| # 0 for every nonnegative integer n, and therefore D is not strongly

stable; a contradiction. Outcome: A self-adjoint operator is a proper contraction if
and only if it is a Cyg-contraction. This yields the following corollary of the above
theorem.

Corollary 2.4. If a contraction A inU has no nontrivial invariant subspace, then
both A and D = |A?| — |A|? are proper contractions.

Corollary 2.5. If a hyponormal contraction A has no nontrivial invariant sub-
space, then D = |A?| — |A|? is a strict contraction.

Proof. Let || ||1 denote the trace-norm. If A is a hyponormal operator without
a nontrivial invariant subspace, then the Berger-Shaw Theorem ensures that the
self-commutator [A*, A] is a trace-class operator, and so is

|A2|? — |A]' = A*(A*A — AA")A = A*[A*, AJA

(the trace class is a two-sided ideal of B(H)). This implies that the nonnegative
D? = |D|? also is trace-class. Indeed (cf. [3], p.294, inequality (X.10)),

142 — Al <1422 - |4
1 1

and therefore,
D%l < AP ITA", Al |11

so that D? is trace-class and, consequently, compact. Thus D is compact (the
square root of a compact operator is again compact). If, in addition, A is a con-
traction, then D is strongly stable by Theorem 2.2 (reason: A lies in U because it
is hyponormal). But for compact operators strong stability coincides with uniform
stability (i.e., if K is compact, then ||K™z| — 0 for every x € H if and only if
[[K™|| — 0), and uniform stability means spectral radius less than one. Since D is
self-adjoint, it follows that ||D|| = r(D) < 1; that is, D is a strict contraction. O

3. A COMMUTATIVITY THEOREM

Recall from [7] that a contraction A has C.¢ completely nonunitary part if and only
if A satisfies the PF-property (i.e., if and only if AX = XV* for some isometry
V and X € B(H) implies A*X = XV). Let P denote the class of contractions
B with C.9 completely nonunitary part such that (a) B € P implies that the
restriction of B to an invariant subspace is again in P; (b) 0,(B) = 0,,(B); (c)
r(B) = |B|; and (d) the defect operator Dg = (1 — B*B)z € Cy. (Trivially,
isometries belong to the class P.) Let U denote those A € U for which normal
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subspaces are reducing. (An invariant subspace M of A is said to be a normal
subspace of A if A|ps is normal.) Let 045 : B(H) — B(H), 44 = d4, denote the
derivation 0 45(X) = AX —X B. The following theorem shows that the PF-property
of contractions A € U has a generalization to contractions A € U.

Theorem 3.1. If A is a contraction inUqg such that d,5(X) = 0 for some B* € P
and X € B(H), then d4+p«(X) = 0.

The proof of the theorem proceeds through some steps, stated below as lemmas.
The following lemma is well known for the case in which the contraction A is
subnormal or hyponormal.

Lemma 3.2. A Cy-contraction A € U is normal (with pure point spectrum).

A1 *

0 A
op(A1) is a countable set contained in the unit disc D and 0(As) = 04(As2) is con-
tained in the boundary dD of the unit disc [2, 14]. Since A; € Uy, the countability
of 0(A,) implies that A; is normal and A = A; & A,. Clearly, As € U. Hence,
since o(Ay) C OD, r(Ay) =1 = r(A;'), which implies that Ay is unitary. Since A
is completely nonunitary, A = A;. O

Proof. As a Cy-contraction, A has a triangulation A = [ ] , where 0(A1) =

Lemma 3.3. If A is a normal contraction and B* € P is a pure contraction, then
the only solution X € B(H) to dap(X)=01is X =0.

Proof. Suppose there exists a nontrivial solution X to the equation AX = X B. Let
Ay = Al—, Bf = B*|yrt x and let X; = ker™ X — ran X be the quasiaffinity
defined by setting X1z = Xz for each x € H. Then A; is a subnormal contraction,
B} € Pisa C. contraction and A1 X7 = X3 Bj. Since subnormal contractions have
C.o completely nonunitary part, it follows that both A; and B are Cyg completely
nonunitary contractions. The hypothesis Dp+ € Co implies Dp: € C2. Hence By is a
Cy contraction [2]. Tt now follows that A; is a Cy contraction, which is quasisimilar
to By [14]. By Lemma 3.2, A; is normal and has pure point spectrum. Since qua-
sisimilar Cp contractions have the same spectrum, o(B]) = 0,(B}). This, however,
is impossible since 0,(B}) = 0,,(B7), normal subspaces of B} are reducing, and
B7 is pure. Hence X = 0. a

Lemma 3.4. If A € Uy is a pure contraction and B* € P is a normal contraction,
then the only solution X € B(H) to 04p(X) =0 1is X =0.

Proof. The proof being similar to that of Lemma 3.3 is omitted. |

Lemma 3.5. If A € Uy and B* € P are pure contractions, then the only solution
X e€B(H) todap(X)=01is X =0.

Proof. Once again the proof is similar to that of Lemma 3.3. Since A and B* have
C'.o completely nonunitary parts, A; and Bf have C.g completely nonunitary parts.
Thus A; and Bj are quasisimilar Cy contractions. Hence A; is normal and A has
a normal part (which is a contradiction). O

Proof of Theorem 3.1. Decompose A and B* into their normal and pure parts
by A=A, ® Ap and B* = B}, & By, and let X have the corresponding matrix
representation X = [Xij]aj:l. Then Lemmas 3.3, 3.4 and 3.5 imply that X;; =0
for all 4, j except ¢ = j = 1. Hence (A, ®A,)(X1190) = (X1160)(B, $ B,). Since
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A, X11 = X711 By, if and only A% X1, = X711 B} by the Putnam-Fuglede theorem (see
[9]), the result follows. O

For each A in B(H) let R(5A)w denote the weak closure of the range of the
derivation d4 (recall: R(dA)u) = R((SAA)“)), and let {4} denote the commutant
of A. Then every compact operator in R(J A)w N {A} is quasinilpotent [15]. We
close this paper with the following theorem which shows that compact operators in
R(6 A)w N{A*}" are quasinilpotent whenever either A or A* lie in Uj.

Theorem 3.6. If A or A* is an operator in Uy, then every compact operator in
—_—w ’
R(6a) N{A*} is quasinilpotent.

Proof. We consider the case in which A € Uy; the proof of the other case follows
from a similar argument. If B is an operator in R(éA)w N {A*}', then B* lies in
R(S A*)w N {A}. We start by showing that zero is the unique possible eigenvalue
of B* whose eigenspace is finite-dimensional; that is,

{A € 0,(B"): dimker(B* — \) < oo} C {0}.

Indeed, suppose there exists A in ¢,(B*) such that M = ker(B* — X) is finite-
dimensional. Then the subspace M is invariant under both A and B*. The subspace
M being finite-dimensional, the spectrum of the restriction A; of A to M consists of
a finite number of points, and hence A; is normal. By hypothesis, normal subspaces
of A reduce A. Therefore, A = A1 @ Ag, where Ay = A|ggn. Letting B* have the

representation [ : }, with respect to the decomposition H = M & (H & M),

0
it follows that Ay € R(da:) N {A%}. Recall from [1, pp.136-137] that if N is a
normal operator, then R(dx) N {N} is nilpotent. Hence X = 0.

If B* € R(djﬁl)w N {A}" is compact, then it follows from the above inclusion that
o(B*) = {0}. Hence B is quasinilpotent. |
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