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DUAL-SHIFT DECOMPOSITION OF HILBERT SPACE

CARLOS S. KUBRUSLY & NHAN LEVAN

ABSTRACT. We introduce the notion of “dual-shift” decomposition of a sep-
arable Hilbert space on which two unilateral shifts are defined. Such a de-
composition is then obtained for the function space L2[0,1] on which the two
unilateral shifts are “derived” from the dilation-by-2 and the translation-by-1
bilateral shifts on L?(R). We then use Multiresolution Analysis of Wavelet
Theory to show existence of Haar system type orthonormal base for L2 [0, 1].
Finally, we combine these with the dual-shift decomposition to obtain a “re-
fined” decomposition for L2[0, 1].

1. INTRODUCTION

We introduce the concept of orthogonal decomposition of a Hilbert space, with
respect to two discrete unilateral shift semigroups defined on the space.

Let S and V be unilateral shifts defined on a separable Hilbert space H. We know
that H admits the wandering subspace decompositions: H = @, Sk ker (%), and
H =@, VFker (V*).

Is it possible to decompose H into a “similar” orthogonal decomposition—
involving both S and V simultaneously? For instance,

H =P S* ker (S*) & @ V* ker (V¥).
k=1 k=1

If such a decomposition exists then we refer to it as a “Dual-Shift Decomposition”
of the Hilbert space H. It is worth noticing that we can always get a decomposition
as above if we allow the shifts S and V to act on different Hilbert spaces. In fact,
the Orthogonal Projection Theorem ensures that H = M @& M~ for any subspace M
of H. Since M and M~ are Hilbert spaces, it is enough to consider their wandering
subspace decompositions in terms of a unilateral shift S on M and a unilateral shift
V on M+, respectively. However, our “Dual-Shift Decomposition” requires that S
and V are unilateral shifts acting on the same Hilbert space H.

We begin by showing necessary and sufficient conditions for a dual-shift decom-
position to exist. Then we derive such a decomposition for the function space
L?[0,1]—with respect to two unilateral shifts, denoted by D, and Dy, which are
related to the dilation-by-2 and the translation-by-1 bilateral shifts on L2(R).

Let ¥(.) be an orthonormal wavelet—living in L?[0, 1]—which “comes” from a
scaling function ¢(.) € L?[0,1]. We show that the orthonormal wavelet functions
Y () == (D™T™)(.)—living in L?[0, 1] together with the scaling function ¢(.)
form an orthonormal basis for L2[0,1]! This is shown by means of the Multiresolu-
tion Analysis (MRA) associated with ¢(.) and v(.)
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An example of the above is the celebrated Haar system in L?[0, 1]. This system
is derived from the Haar wavelet ¥y (.)

Yp(t) = 1, 0<t
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and the associated Haar scaling function ¢x(.) = x0,1)(-), where x[o,1)(.) is the
characteristic function of [0, 1].

Finally, we derive from the Haar system on L?[0, 1] similar systems for the sub-
spaces L2[0, 3] and L?(4,1]. These Haar systems will then be combined with the
dual-shift decomposition to yield a “refined” decomposition for the function space
L2[0,1].

2. MAIN RESULTS

In the following we will be dealing with separable Hilbert spaces. Inner product
and norm are denoted by [.,.] and by || .||, respectively. We begin by deriving an
orthogonal decomposition for a separable Hilbert space H on which two isometries,
with special properties, are defined.

Lemma 1. Let S and V be isometries on a Hilbert space H. The following asser-
tions are pairwise equivalent.

(a) ran(S) = ker(V*).

(b) ran(V) = ker(S*).

() SS*+VV*=1I

Proof. The equivalence between (a) and (b) follows at once by recalling that ker(T") =

ran(T*)* for every operator T on H, and for every linear manifold M of H : M=
M+, and M++ =M, and the fact that isometries have a closed range. Suppose any
of the equivalent assertions (a) and (b) holds true and take an arbitrary = v+ v
in H = ran(9) + ran(S)* = ker(V*) + ran(V) so that u € ran(S) = ker(V*) and
v =ran(V) = ker(S*). Thus

(SS*+VVHax=SS"u+SS"v+VV'u+VV*i=85Sy+ VV*Vz = Sy + Vz,

for some y and z in H such that u = Sy and v = Vz. Therefore (SS* + VV*)z =
u+ v = z; that is assertion (c) holds true. Conversely, suppose (c) holds true. If
u € ran(S) so that u = Sy for some y € H, then SS*u = S5*Sy = Sy = u, and
hence u = SS*u + VV*u = u + VV*u, so that u € ker(VV*) = ker(V*); that is,
ran(S) C ker(V*). On the other hand, if v € ker(V*), then v = (SS* + VV*)V =
SS*v € ran(S) and so ker(V*) C ran(S). Hence (c¢) implies (a). This finishes the
proof. O

Recall that a unilateral shift S, on a Hilbert space H is an isometry which is
such that H admits the orthogonal decomposition [1,6]

(2.1) H =P Sk ker (S3).
k=0
The subspace ker (S7) is called the generating wandering subspace of S, while its
dimension is the multiplicity of the unilateral shift.
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Now, let us rewrite (2.1) as

(2.2) H =ker (5}) & @ Sk ker (S5).
k=1
Therefore,
(2.3) ran (Sy) = @ SF ker (S7) = @ S* S, ker (S3).
k=1 k=0

This shows that the restriction of Sy, to its range space ran (S,,) is also a unilateral
shift whose wandering subspace is S, ker (S).

It follows from Lemma 1 and from (2.2) that if there exists a second unilateral
shift V,, (say) which, together with S,,, satisfy the conditions of Lemma 1, then the
space H admits the orthogonal decomposition

(2.4) H = ran(V,) ®ran(S,),
(2.5) = EB VE ker (V) @ @ S¥ ker (S7).
k=1 k=1

‘We summarize the above in the next theorem.

Theorem 1. Let S, and V, be unilateral shifts on a Hilbert space H such that
ran (Vy,) = ker (S}). Then H admits the “dual-shift” decomposition

H= @Vuk ker (V) @ @Sﬁ ker (S).
k=1 k=1

To proceed, we recall that a bilateral shift U on a Hilbert space H is a unitary
operator for which there exists a generating wandering subspace W, such that

(2.6) UnWy LU™W,, m#m,
and, since it is generating, H admits the orthogonal decomposition [1,6]
(27) H= @ U'w,

k=—oc0

We must note that generating wandering subspace of a bilateral shift need not
be unique! Also, an alternate definition of bilateral shifts is [2].

Definition 1. A bilateral shift U : H — H is a unitary operator for which there
is a subspace Vj satisfying the following conditions:

(i)o UVy C Vp,

() U*Vo C Vo)

(i) Mpeoo U™ Vo = {0},

(i

00

i) U, . U"Vo=H.

This Definition is actually the Lax-Phillips definition of outgoing subspace (re-
spectively, incoming subspace) Vp for a unitary operator U [3].

Proposition 1. Let Vi be an outgoing subspace of a unitary operator U then:
Vo=@, _U™W,, and H = @, Um™Wy, where Wy = Vo © UV is a gener-

m=—0oQ

ating wandering subspace for U. Hence, U is a bilateral shift operator on H, [3,4].
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Moreover, Vy is an irreducible invariant subspace of U [4]. Conversely, if an in-
variant subspace M of a bilateral shift U is irreducible, then there is a wandering

subspace W for U so that M = @,._,U™W, [4].
An easy consequence of the above is.

Lemma 2. Let V be a closed subspace of H and define V, := U™V, (Vi =
U*™Vy), m € Z, where U : H — H is a unitary operator. The set {V,,, m € Z}
satisfies the following properties:

(1) Vm+1 CVin, meZ,

() s Vin = {0},

(i) U Vm=H,
if and only if Vi is an outgoing (respectively, incoming) subspace for U. Similarly,
if condition (i) is replaced by

(1) Vin C Vi1, m e Z,
then {Vin, m € Z} satisfies (i), (i), (i) if and only if Vi is an incoming (respec-
tively, outgoing) subspace for U.

The above lead us to the concept of Multiresolution Analysis (MRA) of Wavelet
Theory [5]. For this we begin by defining, on L?(R), the dilation-by-2 operator D

(2.8) Df=g, g()=V2f(2()),

and its adjoint operator D*

. _ 1,0
and the translation-by-1 operator T,
(2.10) Tf=g, g()=/f(()-1),
and its adjoint
(2.11) Tf=g g()=/f(()+1).

It is easy to see that both D and T are unitary operators—more precisely, bilat-
eral shifts—on L?(R).
We have [5].

Definition 2. A sequence of subspaces {V;,(¢), m € Z} of the function space
L?(R) is a MRA, with scaling function ¢(.), if the following conditions hold:

i) Viny1(®) CVin(¢), meZ,
ii ﬂros:—oo Vm(¢) = {0}3

(o}

(
(
(i) Up__ oo V() = L2(R),
(
(

~—

iv) v(.) € Vin() & v(5 () € Vims1(¢), mEZ,
v) {#((.) —n), n € Z} is an orthonormal basis of the subspace Vo(¢).

It is clear that Definition 2(iv) can be expressed in terms of D* as
(2.12) Vint1(¢) = D"V (¢), meZ,
while, Definition 2(v) is “native” only to MRA and has nothing to do with the fact
that D is a bilateral shift.

We conclude from Lemma 2 and Definition 2 that.
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Proposition 2. A MRA is a sequence of decreasingly-nested subspaces { Vi, (4), m €
Z) of the function space L*(R), i.e., Vi (¢) C Vins1(0), m € Z, generated from an

incoming subspace Vo(@) for the bilateral shift D, i.e., Vi, (6) = D*™Vo(@), m €

Z, where V(o) is, in turn, generated by a scaling function ¢(.), i.e., Vo(¢) =

spam {6((.) — n), n € Z}.

We now derive a dual-shift decomposition for the function space L?[0,1], con-
sidered as a subspace of the function space L?(R). This, we shall see, involves two
unilateral shifts “deriving” from the bilateral shift operator D defined on L%(R).

To see how D behaves on L?[0, 1], we consider

1 :
/ )Pt = / VEf@Pdr, () € L0,1].
0 0

This shows that D is an isometry sending L2[0,1] to L?[0, 3]. Hence the subspace
L?[0,1] is D-invariant. To proceed, let us identify the subspace L?[0, %] with the
subspace {f(.) € L?[0,1] : f(.) = 0 a.e.on(3,1]} of L?[0,1]. Then the part of D
on L2[0,1], i.e., D|L?[0,1] := D,, : L?[0,1] — L?[0,1] is an isometry whose range
space is the subspace L2[0, 1] of L?[0,1].

We therefore have.

Theorem 2. The operator D, is a unilateral shift on L?[0,1], with wandering
subspace LZ(%, 1]. Therefore,

(2.13) L*0,1] = é DTLQ(%, 1].
m=0

Proof. The proof follows readily from the fact that the part of a bilateral shift is a
unilateral shift [6], and since ker (D) = LQ(%7 1]. |

Corollary 1. D, is a unilateral left shift on L?[0, %] with wandering subspace
12(4, 4], and

1 = 1 = 11
2.14 L%[0, =] = DI (= 1] = D™LA(=, =]
(2.14) 0.5)= @ P 1= @ PG )

Proof. We have from (2.13): L%[0, 3] = @,._, D"t L?(3,1] = ;._, DL (%, 4].
This proves the Corollary. |

Next, we construct a second unilateral shift which together with D,, will yield a
dual-shift decomposition for L2[0,1]. For this we define the operator

(2.15) D, = DT.

It is easy to see that

(2.16) DT? =TD.
Therefore,

(2.17) D, :=DT =TDT~,

i.e., Dy is T-unitarily equivalent to D. Therefore it is also a bilateral shift on L?(R.)
and has infinite multiplicity.
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Now, the space L2[0, 1] is invariant under D; since
/ |fF(t)]2dt = |\/§f(27 —1)|dr.
1
2

Therefore, as in the case of the unilateral shift D,,, we identify the subspace L?(3, 1]
with the subspace {f(.) € L?[0,1] : f(.) =0, a.e. on [0, 3]} of L?[0,1]. Then, the
part Dy, of D1 on L?[0,1],

(2.18) Dy, == D1|L?[0,1]

is an isometry on L?[0, 1], and its range space is the subspace LQ(%, 1]. We therefore
conclude that.

Theorem 3. The operator Dy, is a unilateral shift on L?[0,1], with wandering

subspace L2[0, %] Therefore L?[0, 1] admits the orthogonal decomposition

(2.19) @ D7 L2 [0

As before, we also have.

Corollary 2. Dy, is a unilateral right shift on L2(% 1] with wandering subspace
L?(

2,4] and

(2.20) @ D L2[0 EB Dn L2 — 2

It then follows easily from the above that.

Theorem 4. With respect to the unilateral shifts D, and D, the function space
L?[0,1] admits the dual-shift decomposition

(2.21) L2[0,1] = @Dm L2 1] e @Dm L2[0
(2.22) = é DmL2 @ Dn
m=0

Corollary 3. With respect to the unilateral shifts D, and Dy, the space L*[0,1]
admits the orthogonal decomposition

1
2 2
@ L 2m+2 ’ 2m+1 D @ L 2m+1 ’ 2m+2]'

To proceed we now recall the definition of an orthonormal wavelet.

Definition 3. An element 1(.) of the function space L?(R) is an orthonormal
wavelet if

(223)  IWOI=1, end w()-DLu(()—n), I#n, LncZ
Moreover, the subspace
(2.24) Wy(¥) :==span {¢((.) —n), n € Z},

is a generating wandering subspace of the dilation-by-2 operator D.
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It follows at once from this definition that, corresponding to an orthonormal
wavelet 1/(.), the function space L?(R) admits the orthogonal decomposition
(2.25) L*R)= @ D"Wy(¥),

Therefore the set
(2.26) {Vmn(.) := (D™T™Y)(.), m, n € Z}

is an orthonormal basis—called wavelet orthonormal basis—of L?(R), and each
Ymn(.) is called a wavelet orthonormal function—generated from the wavelet 1(.).

Let {Vin(6), m € Z} be a MRA with scaling function ¢(.). Moreover, suppose
that

(2.27) Vin(¢) C Ving1(0).

Let W,,, be the orthogonal complement in V;;,41(¢4) of Vi, (),
(2.28) Vit1(¢) = Vin(¢) @ Wy, m e Z.

Then it can be shown that there exists a wavelet ¢(.) such that [5]
(2.29) Wy :=span{y¥((.) —n), ne€Z}:=Wy),
and

(2.30) Wi = D™ Wo i= Wi (), m € Z.

Moreover, Wy(1)) is a generating wandering subspace of the bilateral shift D. Tt is
easy to see that

(2.31) L*R) = Vol¢)® @ Wn(v),
m=0
(2.32) = P o).

Suppose now that an orthonormal wavelet ¥(.) in L?(R) also belongs to the
function space L2[0,1]—considered as a subspace of L?(R). Then it is plain that

(2.33) Y() e L?0,1] = (T"'9)()eLl’n—1,n], n>1.
This, in turn, implies that
@3)  Ypaa() = O e 2T ] m 0,0z,

Therefore, for 1, ,—1(.) to live in L]0, 1] we must require m > 0, and 1 <n < 2™,
(2.35) Ymn_1(.) = (DT 1) () € L*[0,1], Ym >0, 1<n<2™
We therefore have.

Lemma 3. If an orthonormal wavelet v(.) lives in L?[0,1], then the wavelet or-
thonormal functions ¥y, n—1(.) := (D™T™"1)(.), Vm >0, and 1 < n < 2™, also
live in L?[0,1].

The orthonormal set (2.35) is not a basis of L?[0,1]! This is shown in the next
Theorem.
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Theorem 5. Let ¢(.) € L%[0,1] be a scaling function which results in the orthonor-
mal wavelet (.) € L?[0,1]. Then

(2.36) £20,1] = {¢()} & € Zm (),

m=0
where Z,, (1) are finite dimensional subspaces defined by
Zm(¥) = span {(D™T"')(),1 <n < 2™}, m >0.
Therefore the set {$(.),(D™T"19)(.),1 < n < 2™, m > 0}, is an orthonormal
basis of L?[0,1].

Proof. Let {Vi,(¢), m € Z} be the MRA with scaling function ¢(.) which results
in the wavelet ¢(.). Then from (2.31)

(2.37) L*(R) = V() & EP W (1)

m=0
Let P be the orthogonal projection from L?(R) onto L?[0,1]. Then it is plain that

(2.38) PL*R) = L?[0,1] = PVy(¢) @ é PW, ().

But PVo(¢) = P(span {¢((.)—n), n € Z}) = {¢(.)}, and PWy,(¢) = P(5pan {(D™
T 1) (), myn € Z}) = Zpn(b). Therefore (2.36) is proven. The rest of the
Theorem then follows trivially. O

We must note that Theorem 5 gives a simple proof of the interesting fact that
the orthogonal complement in L?[0, 1] of the set of orthonormal wavelet functions
Ymn—1(.), generated from an orthonormal wavelet ¢(.) living in L2[0,1], is the
subspace spanned by the associated scaling function ¢(.)—also living in L?[0, 1].
An example of this is the well known Haar system to be discussed below.

The most well known, and the very first, orthonormal wavelet is the Haar wavelet
Yu(.) [5], defined by

(2.39) Yg(t) = 1, 0

= -1

IN
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We recall that the Haar system [7] is the set of functions
(240) hl(t) = X[071](t), te [0, 1]7

(2.41) hgm i n(t) = V2" (B (2™ — 204 2) — hy (27Tt — 20+ 1)), t€[0,1],

for m > 0, and 1 < n < 2™; and in (2.40) x[o,1)(.) denotes the characteristic
function of the closed interval [0, 1]. Moreover, the Haar system is a basis of all the
function spaces LP[0,1], 1 < p < co. Here we only concentrate on L?[0, 1].

We must note that, recently Antoniou and Gustafson [8] showed that the Haar
system is also eigenbasis of the Time Operator of Statistical Physics.

It is plain that (2.41) can be written in terms of the operators D, T, and D; as,

(2.42)  hogmn(t) (D™TIT2 =2 h))(t) — (D™ T b)) (1)}, t € [0, 1],

1
:ﬁ{
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for m > 0, and 1 < n < 2™. This can be further written as
X[0,1]

V2

From which it follows that, for m = 0, and hence n = 1,

(2.43)  hgmyn(t) = (D™T" (D — Dy) )(#), t€[0,1], m>0, 1 <n<2™

X[0,1]
2.44 hoo 1 (1) = (D — D)22Ny@), e o, 1].
(2.44) 2041(t) = (( 1)\/5)() [0,1]
Therefore,
1
(2.45) hapoia(t) = hat) = 1, 0<t< o,
1
= -1, = <1
) 2<t_

But, this is precisely the Haar wavelet ¢y (.) defined by (2.39). Therefore hom 4, (.)
can simply be written in terms of ¥y (.) as

(2.46) homyn() = (D™T™ 'g)(.), m>0, 1<n<2m
Therefore, by Lemma 3.

Lemma 4. The Haar system {hi(.), hamin(.), m >0, 1 <n < 2™} on L?[0,1]
consists of the function hi(.) = xj0,1)(.), and the Haar wavelet orthonormal func-
tions Y2 ()= (D™T" y)(.), m >0, 1 <n < 2™ where, form =0,n =
1, ¥g(.) is the Haar wavelet Yy (.).

Now, the Haar scaling function ¢y (.) associated with the Haar wavelet ¢y (.) is
the characteristic function xo1)(.) [5]. Therefore, by Theorem 5, the Haar system

247)  {on(); Ymaa ()= DT Yp)(), 1<n <2 m >0},

is an orthonormal basis of L2[0,1]. An easy consequence of Lemma 4 is.

Corollary 4. (i) The Haar system for L?|0, %] 1s the set of orthonormal functions

(248)  {xp,21()s Ymnoa ()= (DT E)(), m>1, 1<n<2771,
(ii) The Haar system for L?(%,1] is the set of orthonormal functions

(249) {xg.u()y Y1) = (DT Pu)(), m=>1, 2" ' <n<2m),

Returning to the dual-shift decomposition of L2[0,1] in Theorem 4. It follows
that each f(.) € L?[0,1] admits the orthogonal expansion

(2.50) Q)= Dlgm()+ > DI h(),
m=1 m=1

where g (.) € L2[0, 3], b () € L2(3,1], 301 llgm (I < 00, o0y [1hm (I <
00. Also, if orthonormal bases of L2[0, 1] and L?(3, 1] are available then g,,(.) and
hm(.) can, in turn, be expressed in terms of these bases. For instance, expanding
gm(.) in terms of the orthonormal set (2.48) we get

2771—1

(2.51) 9 () = amoxpo.) () + 3 @m0,
n=1
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Similarly, using (2.49) we get

(2.52) hm () = bmox 3, Z brn U1 ().

n>2m—1
Therefore, (2.50) becomes

gm— 1

o0 o0
(253) f() = Z amODZ/LX[O,l] + Z Z amnD wmn 1( )
m=1 m=1 n=1
gm
-+ Z meDluX + Z Z bmnD mmn— 1( )}
m=1 m=1np>2m—1
We must note that other orthonormal bases of L2[0,1] and L?(1,1] can be

used. For instance, one can transform the Legendre Polynomials, which form an
orthonormal basis of L?[—1,1], into bases for L2[0, 1] and for L2(1 1], using the
operators D and Dy, since DD L?[—1,1] = L?[0, 2], and D? [?[-1,1] = LQ(%, 1].

3. CONCLUSION

We introduced the concept of a Dual-Shift Decomposition of a Hilbert space. In
particular we derived such a decomposition for the function space L?[0,1], using
the two bilateral shifts of Wavelet Theory: the dilation-by-2 and translation-by-1
operators. Moreover, we derived “Haar-Like” systems for L2[0, %] and Lz(%, 1]—
from the celebrated Haar system on L?[0, 1].

We must note that in the process of deriving the above we show that a Multireso-
lution Analysis (MRA) of Wavelet Theory is actually “generated” from an outgoing
or an incoming subspace—a concept of the Lax-Phillips Scattering Theory—of the
bilateral shift dilation-by-2 operator. Moreover, using the MRA, we show that any
wavelet living in L?[0, 1] together with its scaling function do indeed generate a
“Haar-Like” system for the space L2[0,1].
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