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ASYMPTOTICALLY PARTIALLY ISOMETRIC CONTRACTIONS

CARLOS S. KUBRUSLY

ABSTRACT. If T is a Hilbert-space contraction, then the sequence {T*"T"}, >¢
converges strongly to a nonnegative contraction, which is a projection if and
only if T" admits an orthogonal direct sum decomposition T'= G & V, where G
is a strongly stable contraction and V is an isometry. Call this class of contrac-
tions asymptotically partially isometric (the discrete one-parameter semigroup
{O@®V"},>0 of power partial isometries is such that {T" — (O ® V"™)},>0
converges strongly to zero). Two fundamental results ensure that this is quite a
large class: (1) a contraction whose adjoint has property PF is asymptotically
partially isometric, and (2) a contraction whose intersection of the continuous
spectrum of its completely nonunitary direct summand with the unit circle has
Lebesgue measure zero is asymptotically partially isometric. It is shown that if
every biquasitriangular contraction is asymptotically partially isometric, then
every contraction not in class Cop has a nontrivial invariant subspace.

1. INTRODUCTION

By an operator we mean a bounded linear transformation of a nonzero complex
Hilbert space H into itself. A contraction is an operator 7" such that ||T|| <1 (i.e.,
such that ||Tz| < ||z| for every = in H). Let T* denote the adjoint of T', and let
I be the identity operator. An isometry is a contraction V such that V*V =1
(i.e., an operator V such that |Vz|| = ||z| for every z in H), and a coisometry is a
contraction whose adjoint is an isometry. An operator U is unitary if it is both an
isometry and a coisometry (equivalently, if it is a normal isometry, or a surjective
isometry, or still an invertible isometry). If T is a contraction, then {T*"T"},>¢ is
a bounded monotone sequence of self-adjoint operators (a nonincreasing sequence
of nonnegative contractions, actually) so that it converges strongly:

for some operator A. Basic properties of the strong limit A have been extensively
investigated in current literature (see e.g. [24, p.40], [16], [4], [19], [13], [2], [14] and
[11, Ch.3]). In particular, for every contraction T" the strong limit A of {T*"T™},>¢
is a nonnegative contraction (i.e., O < A < I, where O stands for the null operator),
which is nonstrict whenever it is not null (i.e., ||A|| = 1 whenever A # O). These are
properties shared by (orthogonal) projections but A is not necessarily a projection
(it is not necessarily idempotent).

Example 1. The unilateral weighted shift T'= shift{(k+1)"*(k+2)""(k+3)"*}x>0
on (2 is a nonstrict proper contraction for which A = diag{(k + 1)(k 4+ 2)™'}x>0
is a completely nonprojective diagonal (cf. [14] or [11, pp.51,52]). In other words,
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|T| =1 and | Tz|| < ||z|| for every nonzero z in £2 (i.e., T is a nonstrict proper con-
traction) because the weight sequence {wy}r>0 = {(k+1)"*(k+2)7"(k+3)"*}r>0
is increasing in [\/3/4,1) and converges to 1; and Ax # A%z for every nonzero x in
2 (i.e., A is completely nonprojective).

In fact, A is a projection if and only if it commutes with T (i.e., A = A? if and only
it AT =TA — cf. [2]; also see [14]). Since T* is a contraction whenever T is, the
sequence {T™T"*"},>o converges strongly too. Let A, be its strong limit,

T =5 A
which, of course, share the same properties of A (by replacing T with 7*). It can

be verified that A is a projection whenever A and A, coincide (i.e., A = A, implies
A= A?; cf. [14]).

A brief survey on the class of all contractions T for which A a projection is
followed by an analysis on the role it plays towards a well-known invariant subspace
problem. Such a class is fully characterized in Theorem 0 (Section 2) and, in
light of such a characterization, we call those contractions asymptotically partially
isometric. Two fundamental results which are enough to unfold many subclasses
of it (such as cohyponormal, compact and algebraic contractions) are isolated in
Propositions 1 and 2 of Section 3. We link this class to a classical open question
on invariant subspaces in Section 4.

2. CONTRACTIONS T' FOR WHICH A 1S A PROJECTION

An operator T is strongly stable (notation: 7™ - O) if the power sequence

{T™},>0 converges strongly to the null operator (i.e., ||[T"x| — 0 for every x in
‘H). Thus a strongly stable contraction is precisely a contraction of class Co. and,
dually, a contraction whose adjoint is strongly stable is precisely a contraction of
class C.g, so that a contraction T is of class Cqq if and only if both 7" and T™ are
strongly stable (see [24, p.72]). Since ||T™z|| — ||AZz| for every = in M, it follows
that a contraction T is strongly stable if and only if A = O. On the opposite end
lie the isometries: a contraction T is an isometry if and only if A =1 (reason:
T*"AT™ = A for every nonnegative integer n). These are the classes of contrac-
tions T for which A is a trivial projection. It is worth noticing that an operator T
is a unilateral shift (of any multiplicity) if and only if it is a contraction for which
A=1and A,= O (i.e., an operator is a strongly stable coisometry if and only if
it is a backward unilateral shift — see e.g. [11, p.88]; incidentally, this shows that
the converse of the assertion “A = A, implies A = A2 and A, = A?” fails).

Let M be a subspace (i.e., a closed linear manifold) of H and let V' be an isometry
on M+ = H & M, the orthogonal complement of M. It is clear that the direct
(orthogonal) sum O &V on H = M & M*' is a partial isometry (a contraction
that acts isometrically on the orthogonal complement of its kernel). In fact, this is
the simplest nontrivial instance of a power partial isometry (a partial isometry for
which all its powers are again partial isometries). It was proved in [8] that every
power partial isometry is a direct sum of a truncated unilateral shift, a unilateral
shift, a backward unilateral shift, and a unitary operator (where, of course, it is
understood that not all four direct summands need to be present in every case).
Note that the converse holds trivially because each possible direct summand is
a power partial isometry. Since truncated shifts are nilpotent, it follows at once
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that every power partial isometry is a contraction for which A = A% and A, = A2
(indeed, A=0®I00@I and A,=000a¢Ia] if all four direct summands
are present). Thus the above italicized result from [8] can be seen as a special
case of Theorem 0-b below, where the nilpotent direct summand is extended to a
contraction of class Cqg.

Let T be a contraction on H. If there exists an orthogonal decomposition H =
M@ M+ on which T = G@V for some strongly stable contraction G on M
and some isometry V on M-, then we say that T is an asymptotically partially
isometric contraction. This means that the power sequence {1}, >0 approaches the
sequence of power partial isometries {O @ V"},,>0 in the strong operator topology;
{T™ — (O & V™)},>0 converges strongly to zero. We borrow the next result from
[14] (part of it appeared in [2]). It ensures that a contraction T is asymptotically
partially isometric if and only if A is a projection. (Recall the von Neumann-Wold
decomposition: an isometry V is either a unilateral shift .S, , a unitary operator U,
or a direct sum V=S5, ®U.)

Theorem 0. Let T be a contraction. If A = A2, then
(a) T=GaeS aU,

where G is a strongly stable contraction acting on ker A, S, is a unilateral shift
on ker(I — A)Nker A,, and U is a unitary operator on ker(I — A) Nker(I — A,).
Moreover, if A= A? and A,= A2, then

(b) T=B&S &S aU,

where B is a Coo-contraction on ker ANker A, and S_ is a backward unilateral

shift on ker ANker(I — A,). Furthermore, if A= A,, then
(c) T=BoU.
Proof. See [14] — also see [11, p.83]. O

Again, it is understood that any of the above direct summands may be missing
and, if both summands S_ and S| are present, they may have distinct (finite or
infinite) multiplicities. Note that the converse to each (a), (b) and (c) holds trivially.
According to the Nagy-Foias-Langer decomposition for contractions [22], [15] (also
see, for instance, [24, p.9] or [11, p.76]), every contraction T is uniquely decomposed
as T = C ® U, where C is a completely nonunitary contraction and U is unitary.
(Recall: a contraction is completely nonunitary if it has no nonzero unitary direct
summand; equivalently, if the restriction of it to any nonzero reducing subspace is
not unitary.) Thus, in particular, Theorem 0-a says that C' is of class Cq. (i.e., C
is strongly stable) if and only if A = A% and the direct summand S, is missing in
(a), and Theorem 0—c says that C' is of class Cqq if and only if A = A,.

3. Two WIDE CLASSES OF ASYMPTOTICALLY PARTIALLY ISOMETRIC
CONTRACTIONS

Asymptotically partially isometric contractions are precisely those contractions T
for which A is a projection (Theorem 0-a). Next we isolate two fundamental results
(Propositions 1 and 2 below) which ensure that such a class is quite large.

Consider the following definition from [3] (see also [27] and [12]). A contraction T’
has property PF (a short for Putnam-Fuglede) if either T™* is not intertwined to any
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isometry or, if T is intertwined to some isometry V, then the same transformation
that intertwines T* to V' also intertwines 7" to the coisometry V*. In other words,
let IC be any nonzero complex Hilbert and let X: H — K be an arbitrary nonzero
bounded linear transformation of H into K. A contraction 7' on H has property
PF if, whenever the equation XT* = VX holds for some isometry V on K, then
XT =V*X. Here are two well-known fundamental facts about contractions with
property PF: (1) every isometry has property PF, and (2) if a coisometry has prop-
erty PF, then it is unitary — rather elementary proofs of these results appeared in
[12]. It is worth remarking that, although property PF for contractions as posed
above was introduced in [3], the problem of generalizing (in many directions) the
classical Fuglede-Putnam Theorem (namely, if a bounded linear transformation in-
tertwines a couple of normal operators, then it also intertwines their adjoints) has
been considered by a large number of authors since [21] — for a review on pertinent
literature the reader is referred to [1].

Proposition 1. If a contraction T has property PF, then A, is a projection. (T is
asymptotically partially isometric whenever T* is a contraction with property PF.)

Proof. See [27] — also see [12]. O

Ezxamples. Dominant contractions and paranormal contractions have property PF
(see e.g. [3], [27], and the references therein), and so hyponormal contractions
have property PF. Recall that an operator T is hyponormal, paranormal, or dom-
inant if O < T*T —TT*, ||Tz|* < |T%z||||z|| for every x in H, or ran(\] —T) C
ran(\ — T*) for every A in the spectrum of T, respectively. These three classes
are related as follows: every hyponormal operator is dominant and paranormal.
An operator T is cohyponormal if T* is hyponormal. Therefore (Proposition 1), if
T* is a dominant or a paranormal contraction (in particular, if T is a cohyponor-
mal contraction), then T is asymptotically partially isometric (i.e., A = A2). This
clearly implies that A = A% and A, = A? for every normal contraction, but for a
normal contraction T we get T**T™ = T™T*" for every nonnegative integer n so
that A = A, trivially (which implies A = A?).

Remarks. Perhaps a systematic investigation on asymptotically partially isometric
contractions has been initiated after Putnam’s paper [20]. It contains the first
proof that a completely nonunitary cohyponormal contraction is strongly stable
and, consequently, that if T* is a hyponormal contraction, then T'= G & U, where
G is a strongly stable contraction and U is unitary, so that A is a projection.
Simplified and different proofs followed in [17] (see also [26, pp.113-116]) and in
[13] (see also [11, pp.77-79]) by using a reverse approach. They first verified that
A is a projection whenever T is a cohyponormal contraction and then concluded
that a completely nonunitary cohyponormal contraction is strongly stable (thus
stressing the role played by contractions for which A is a projection). In fact, this
was extended to paranormal contractions in [17], and to dominant contractions in
[5] and [25], which are classes of contractions that include the hyponormal one.

Characterization. Note that the converse of Proposition 1 fails. Indeed, if T is
a backward unilateral shift (i.e., if T = S, where S, is a unilateral shift of any
multiplicity), then A, is a trivial projection (A, = I') but T' does not have property
PF (it is a nonunitary coisometry). In fact, it was proved in [3] that a contraction
T has property PF if and only if its completely nonunitary direct summand is of
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class C.o (see also [12]). Corollaries: (1) T and T* have property PF if and only
if their completely nonunitary direct summands are of class Coo (i-€., if and only if
A=A, — cf. Theorem 0-c), and (2) if neither T nor T* have property PF, then
T has a nontrivial hyperinvariant subspace [12].

Another approach to asymptotically partially isometric contractions, which
evolves in a different direction and includes classes of contractions not related to
the above examples, comes from an earlier result of Sz.-Nagy and Foiag [23]. Let
o(T) denote the spectrum of an operator T and consider its classical partition
o(T) = op(T) Uor(T) Uoc(T), where op(T) is the point spectrum (i.e., the set
of all eigenvalues of T), og(T) = op(T*)*\op(T) is the residual spectrum, and
oc(T) = o(T)\(op(T) Uog(T)) is the continuous spectrum. Let p denote the
Lebesgue measure on the unit circle T'.

Proposition 2. If T is a completely nonunitary contraction and /L(O’(T) N F) =0,
then A= A,=0 (ie., T is of class Cqo).

Proof. See [23] — also see [24, p.85]. O

Corollary 1. Let C be the completely nonunitary direct summand of an arbitrary
contraction T. If p(oc(C)NT) =0, then A= A, so that both T and T* have
property PF, and hence are asymptotically partially isometric.

Proof. Let T be a contraction and consider its Nagy-Foiag-Langer decomposition,
viz. T = C @ U, where C is a completely nonunitary contraction and U is unitary
(as always, any of the above direct summands may be missing). Every completely
nonunitary contraction is weakly stable, and a weakly stable contraction C' is such
that op(C) Uogr(C) is included in the open unit disc (see e.g. [11, pp.106,114]).
Thus, according to Proposition 2, if ,u(oc(C') N F) = 0, then C and C* are strongly
stable and hence A=A, =0 ® I. But A = A, (which means that T and T™* have
property PF) implies A = A? and A, = A2?. a

Samples. Compact (countable spectrum) and algebraic (finite spectrum) contrac-
tions are asymptotically partially isometric. Quasinilpotent (one-point spectrum)
contractions are also included but these are trivially asymptotically partially iso-
metric; they lie in Cgp.

4. BIQUASITRIANGULAR CONTRACTIONS

Are they asymptotically partially isometric? From now on let H be a nonzero
complex separable Hilbert space. An operator 1" on H is quasitriangular if there
exists a sequence {P,},>1 of finite-rank projections on H that converges strongly
to the identity operator and {(I — P,,)T P, },>1 converges uniformly to the null op-
erator [6]. For a wide collection of results on quasitriangular operators the reader
is referred to [18, pp.25-30] and [9, pp.163-192]. T is biquasitriangular if both T
and T* are quasitriangular. Since every operator on H with a countable spec-
trum is quasitriangular, it follows that the above samples (compact, algebraic and
quasinilpotent) are all biquasitriangular.

Question 1. Is every biquasitriangular contraction asymptotically partially iso-
metric? (Is it true that if T and T* are quasitriangular contractions, then A = A?
and A,= A%7)
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If Question 1 has an affirmative answer, then a biquasitriangular contraction T
admits a decomposition T'= B@® S_ @ S, & U (Theorem 0-b) but now just some
direct summands might be missing; a unilateral shift S, is not quasitriangular [6]
(although the direct sum S_ @ S, may be [7]). Therefore, it is tempting to think
that Question 1 might be reformulated as follows.

Question 1'. Is it true that if T is a biquasitriangular contraction, then A = A,?

An affirmative answer to Question 1’ would imply that 7= B @ U (Theorem 0—c),
which trivially implies an affirmative answer to Question 1. Recalling that U is
biquasitriangular (it is normal), and that a (countable) direct sum of biquasitrian-
gular operators is again biquasitriangular, the situation here is simpler; any direct
summand might be missing. Note that Question 1’ can be equivalently stated as:
is the completely nonunitary direct summand of a biquasitriangular contraction of
class Coo? Or, still equivalently, is it true that if T is a biquasitriangular contrac-
tion, then T and T* have property PF?

Answer 1'. No. T = S, & S; is a biquasitriangular contraction for which A # A, .
Indeed, if S, is a unilateral shift (of multiplicity one), then S, & Sy is quasitri-
angular [7]. Since it is unitarily equivalent to its own adjoint, it follows that it
is biquasitriangular. Hence S, @ S} is a completely nonunitary biquasitriangular
contraction which, of course, is not of class Cog. In fact, if T = S, ® S}, then
A=IT®0 and A, = O @ I. Thus the contraction S, @& S; supplies a negative an-
swer to Question 1, but not to Question 1; S, & S} is an asymptotically partially
isometric biquasitriangular contraction.

Example 2. Let T be the unilateral weighted shift of Example 1, which is a
hyponormal contraction (its positive weight sequence is increasing). Since T is not
asymptotically partially isometric, we should verify whether it survives Question
1. Yes, it does; it is not quasitriangular (reason: T*T = diag{w? }x>0 > (3/4) and
ker(T*) # {0} — see e.g. [7]); and neither is O & T (see e.g. [6]).

Recall that if there exists an operator (on an infinite-dimensional complex sep-
arable Hilbert space) without a nontrivial invariant subspace, then it must be bi-
quasitriangular (see e.g. [18, p.30]). Moreover, if a contraction T' with A = A? and
A, = A? has no nontrivial invariant subspace, then it is of class Cog (A = A, = O)
by Theorem 0-b. That is, T = B € Cgp because the other possible direct sum-
mands S_, S, and U clearly have nontrivial invariant subspaces; isometries (and
coisometries) have nontrivial invariant subspaces. The above two results show that
Question 1 has at least one important consequence, namely, an affirmative answer
to Question 1 leads to an affirmative answer to the following classical open question
(see [10] for equivalent versions of it).

Question 2. Does a contraction not in Cog have a nontrivial invariant subspace?
Outcome. If every biquasitriangular contraction is asymptotically partially isomet-

ric, then every contraction not in Cgp has a nontrivial invariant subspace.
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