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CONTRACTIONS WITH (C, DIRECT SUMMANDS

C.S. KuBrusLy AND B.P. DuaccaL

ABsTRACT. Contractions with a C.g completely nonunitary direct summand were
characterized in [4] as those contractions with property PF. The main purpose of
this paper is to isolate the essential feature behind such a characterization, namely,
contractions T for which the strong limit of {T"™T*"},,>1 is a projection, and to give
a simple new proof of it by using only direct sum decomposition techniques. It is
also proved a couple of corollaries for contractions with property PF that mirror the
Fuglede-Putnam Theorem for normal operators.
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1. Introduction

The class of Hilbert-space contractions with C.g completely nonunitary direct summands
was recently characterized in [4] as those contractions T for which either T* is not
intertwined to any isometry or, if T* is intertwined to an isometry J, then the same
intertwining transformation also intertwines 7' to the coisometry J*. This necessary and
sufficient condition was called “PF property” in [4] (PF for Putnam-Fuglede). Here we
single out the essential feature behind such a characterization, viz. if a contraction T
has property PF, then the strong limit A, of {T™7T*"},>1 is a projection. A direct
sum decomposition for contractions with A, = A2 was developed in [9]. Applying it
to contractions with property PF yields a direct simple proof for the above-mentioned
result. The paper is organized as follows. Notational preliminaries are introduced in § 2.
Basic facts about PF property are considered in § 3. Contractions with C.q completely
nonunitary direct summands are characterized in § 4, and some applications come in § 5.



2. Preliminaries

Throughout this paper H and K stand for nonzero complex Hilbert spaces, and B[H, K]
stands for the Banach space of all bounded linear transformations of H into K. If X lies
in B[H, K], then X* in B[K, H] denotes the adjoint of X. The range of X € B[H, K] will
be denoted by R(X) and its closure, which is a subspace (i.e. a closed linear manifold)
of IC, by R(X)~. The null space (kernel) of X € B[H, K], which is a subspace of H, will
be denoted by N(X). Set B[H] = B[H, H] for short. If T lies in B[H], then we say that
T is an operator on H. An operator T on H is strongly stable (notation: 7" —- O) if
the power sequence {T™},,>1 converges strongly to the null operator O (i.e. if 7"z — 0
in H for every z € H). By a contraction we mean a operator T such that | 7| <1 (i.e.
|Tz|| < ||z| for every z € H). An isometry is a contraction 7" such that ||Tz| = ||z|| for
every x € H (equivalently, an operator T for which T7*T = I, the identity on H), and T
is a coisometry if 7™ is an isometry. If T' is an isometry and a coisometry, then it is a
unitary operator. A contraction is of class Cy. if it is strongly stable, and of class C.g
if its adjoint is strongly stable. On the other extreme, if a contraction 7" on H is such
that T™x -0 for every nonzero z in H, then it is said to be of class Cy. and, dually, if
T*"x -0 for every nonzero x in H, of class C.q. These lead to the Nagy-Foiag classes of
contractions introduced in [12] (see also [13, p.72]), namely, Cog, Co1, C10 and Ci;. The
proposition below states a collection of well-known results that will be required in the
sequel (see e.g. [5] or [7, Ch.3]).

ProOPOSITION 0. If T is a contraction on H, then T*"T™ —=> A (i.e. the sequence
{T*™T™},>1 of operators on H converges strongly to an operator A on H, which means
that ||(T*"T™ — A)z|| — 0 for every = € H). Moreover, A is a nonnegative contraction
(ie. O < A<I), A= O if and only if T is strongly stable (in fact, | T"z|| — ||A"?z| for
every x € H), and A = T*"AT" for every nonnegative integer n. Furthermore, associated
with T and A there exists an isometry V on R(A)™ such that A>T = VA"*.

Remark: Since T is a contraction whenever T'is, let A, be the strong limit of {1717 },,>4
and let V, be the associated isometry on R(A,)~ so that all the above properties hold for
T, A and V replaced with T, A, and V., respectively.

Next we consider two consequences of Proposition 0 that will be needed in § 4 and § 5.

PROPOSITION 1. A contraction T in B[H] is strongly stable (i.e. T € Cy.) if and only if
the unique solution X in B[H, K] to the equation XT = JX for any isometry J in B[K]
1s the trivial X = O.

ProoOF. Take an arbitrary isometry J in B[K] so that ||J™y|| = |ly|| for every positive
integer n and every y in . If 7" =5 O and XT = JX for some X in B[H, K], then
| Xz|| = ||J"Xz| = ||XT"z|| — 0 for every x in ‘H, and hence X = O. Conversely,

recall from Proposition 0 that AY*T = VAY?. If T" = O (i.e. if A # O), then set
K =R(A*)™ = R(A)~ # {0} and consider the transformation X in B[H, K] defined by
Xz = A?z for every z in H. Thus X7 = VX and X # O. 0
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A nonzero transformation X € B[H, K] intertwines an operator 7' € B[H] to an operator
S e BIK] if XT = SX. In this case (i.e. if there exists a nonzero X intertwining 7" to S),
then T is said to be intertwined to S. X € B[H, K] is quasiinvertible if it is injective and
has dense range (i.e. N(X) = {0} and R(X)~ = K). T € B[H] is a quasiaffine transform of
S € B[K] if there exists a quasiinvertible X € B[H, K] intertwining 7" to S. Proposition 1
can be rewritten in terms of intertwinement as follows. A contraction is of class Cy. if
and only if it is not intertwined to any isometry. Here is the Cy. counterpart.

PROPOSITION 2. A contraction is of class Cy. if and only if it is a quasiaffine transform
of an isometry.

PROOF. Let T be a contraction on H. If T € C;., then N'(A) = N(A"Y?) = {0} so that
R(A)™ = R(AY?)™ = H (since A is self-adjoint) and A”*T = VA"? (cf. Proposition 0).
Hence T is a quasiaffine transform of the isometry Von R(A)~. Conversely, suppose there
exists an injective X € B[H, K] intertwining 7" to some isometry J on K. Thus 0 < || Xz||
whenever z # 0 (so that || X || # 0 because H # {0}) and XT™ = J"X for every positive
integer n. Hence 0 < || Xz| = [[J"Xz| < ||X||||T"«| for each n>1, and therefore
lim | T"z|| > 0, for every nonzero x in H. That is, T € Cy.. 0

3. Property PF for Contractions

Definition [4]: A contraction T € B[H] has property PF if, whenever the equation
XT"=JX

holds for some isometry J € B[K] and some X € B[H, K], then
XT = JX.

That is, a contraction 7" on H # {0} has property PF if either 7™ is not intertwined to
any isometry on any K # {0} or, if X # O intertwines 7™ to an isometry J, then the
same X also intertwines 7' to the coisometry J*. Propositions 3 and 4 below state basic
facts about contractions with property PF that will be needed in the sequel.

PRoOPOSITION 3. Fuvery isometry has property PF.
PROOF. Suppose T*T = I (identity on H) and J*J = I (identity on K). If there exists
X € B[H, K] such that XT* = JX, then XT = J*JXT = J*XT*T = J*X. ad

PROPOSITION 4. If a nonunitary coisometry is a direct summand of a contraction T,
then T does not have property PF. In particular, if a coisometry has property PF, then
it 18 unitary.

PROOF. Suppose a contraction T on H has a coisometry as a direct summand. That is,
there exists a proper subspace M of H that reduces T for which T'= S & J*, where S is
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an operator on M and J is an isometry on M+ = H & M, the orthogonal complement
of M. Set X=0@®Jand W =I1I®J on H=M @O M. Since

XT* = 0®J? = WX,
X intertwines T to the isometry W. If T has property PF, then
O®JJ = XT =W'X =0aJ"J
so that J is a normal isometry (i.e. a unitary operator). O

The class of contractions 7" for which the strong limit A of {T*"1™},>1 is a projection
was investigated in [3] and [9]. It coincides with the class of contractions 7" that commute
with A; that is, A = A? if and only if AT = TA (cf. [3] and [9]). Next we give a simple
new proof for a lemma that sets a link between this class and the class of contractions
with property PF.

LEMMA 1. If a contraction T has property PF, then A, = AZ2.

Proor. Let T be a contraction on H. Consider the nonnegative contraction A, on H
and the isometry V, on R(A,)~ such that AY*T* = V,AY? (cf. Proposition 0). Take an
arbitrary nonnegative integer n. Thus

AYPT = VhAY?.
If T has property PF, then AY*T = V,*AY? so that AY?T™ = V,""A/?, and hence
A>1k/2 an — T*nAi/Q
because AY? is self-adjoint. But A, = T"A, T*" so that
A, = TPAPAPT* = TPAYP VA = ThT*AYPAY?
and therefore A, = A? (reason: T"T*" == A,). O

For another proof see [14]. Note that the converse fails: if T' is a nonunitary coisometry
(sample: a backward unilateral shift), then A, =1 but 7' does not have property PF
by Proposition 4. The above lemma plays a central role for proving the characterization
of C.g contractions in Theorem 1 below. The class of all contractions with property PF
is quite large (see e.g. [4] and the references therein) and is included in the class of all
contractions with A, = A2. This, among other evidences (cf. [3] and [9]), indicates that
we need to know more about the class of contractions for which A = A? (or A, = A?).
For instance, every hyponormal contraction is such that A, = A2 ([11], [10] and [8]),
and hence every normal contraction is such that A = A% and A, = A?. This is also true

for every compact contraction. In fact, normal or compact contractions are such that
A, = A, which implies A = A? [9].



4. Contractions with a C.g Direct Summand

The result in Theorem 1 below appeared in [4]. We shall give a new proof of it based
entirely on direct sum decompositions for contractions. Observe from Proposition 1
(replacing T' with T*) that a contraction T € B[H] is of class C.o if and only if the
unique solution X € B[H,K]| to the equation XT* = JX for any isometry J € B[K] is
the trivial X = O. Therefore, if T is of class C.g, then it has property PF trivially.
Theorem 1 deals with the nontrivial converse for an arbitrary contraction. Recall that a
contraction is completely nonunitary if it has no unitary direct summand.

THEOREM 1. The completely nonunitary direct summand of a contraction T is of class
C.o if and only if T has property PF.

Proor. If a contraction T" on H has property PF, then A, is a projection by Lemma 1.
Hence T™ can be decomposed as the direct sum of a strongly stable contraction G, a
unilateral shift S,, and a unitary operator U (cf. [9]), where any of the direct summands
of the decomposition 7" = G & S, & U may be missing (see also [7, p.83]). Thus

Tr=G"aeSfeU",

where G* is of class C.g, S is a completely nonunitary coisometry, and U* is unitary.
Since T has property PF, Proposition 4 ensures that S} cannot be present in the above
decomposition. Therefore,

T=G"aoU"

so that the completely nonunitary direct summand of T is of class C.o (reason: G* is
completely nonunitary because G is strongly stable, and any direct summand of U* is
again unitary). To prove the converse consider the Nagy-Foias-Langer decomposition for
a contraction T in B[H], namely,

T=UasC

on H=U®®U, where U =N —-A) NN - A,), U=T|y in B[U] is unitary, and
C = T|y. in BU] is a completely nonunitary contraction (the completely nonunitary
direct summand of T"). Suppose XT™* = JX for some isometry J in B[] and some X in
B[H, K]. The von Neumann-Wold decomposition for isometries says that

J - W@SJ,_

on K=WaoW+ where W=N(I - A") (with A’ denoting the strong limit of
{JrJ*"},>1), W = J|w in BW] is unitary, and S, = J|yy1 in BIW] is a unilateral
shift. These are classical direct sum decompositions (see, for instance, [13, pp.3,9] or
[7, pp.76,81]). The transformation X in B[H, K] can be written in terms of the orthogonal
decompositions H =U & U+ and K =W o W as

X1 X2
X =
(X21 X22)
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with X11 in B[U,W], X12 in B[UJ', W], X21 in B[U,WJ‘] and X22 in B[Z/{J', WJ‘] Since
XT* =JX we get

XnU* = WXy, X120 = WXyo,
X U* = 54X, X02C* = 84 Xo.

Proposition 3 ensures that
XU = WXy

because U and W are isometries. Since X35,57 = UX5, and S} is strongly stable, it
follows by Proposition 1 that X5; = O (and so X291 = O). Now suppose C' is of class C.g
(i.e. C* is strongly stable). Since W and S, are isometries, it also follows by Proposition 1
that X195 = O and X595 = O. Therefore XT = J*X, and hence T has property PF. ad

5. Applications

Consider again the Nagy-Foias-Langer decomposition for a contraction 7', viz.
T=U®C,

where U and C are the unitary and completely nonunitary direct summands of T,
respectively (each of them may be missing), and let A and A, be the strong limits of
{T*"T"},>1 and {T"T*"},>1 (cf. Proposition 0). We start with three straightforward
corollaries of Theorem 1. Corollary 1 says that both T" and T* have property PF if and
only if A, = A. On the opposite end, Corollary 3 says that if none of T" and T™* has
property PF, then T has a nontrivial hyperinvariant subspace.

COROLLARY 1. The following assertions are pairwise equivalent.

(a) T and T* have property PF.

(b) C € Cy.

(c) A, =A.

PROOF. Assertions (a) and (b) are equivalent by Theorem 1. It was shown in [9] that

A, =Aifand only if T = U @ B, where U is unitary and B is a contraction of class Cyg.
This ensures that assertions (b) and (c¢) are equivalent too. 0

COROLLARY 2. C € Cyg if and only if T has property PF and is a quasiaffine transform
of an isometry.

ProoF. T =U & C lies in C;. if and only if C' € C;. (since unitary operators lie in C11).
Thus T is a quasiaffine transform of an isometry if and only if C' € C;. (Proposition 2),
and T has property PF if and only if C' € C.q (Theorem 1). O

Every scalar contraction has property PF. Indeed, if a contraction 7' is a multiple of the
identity, then it is either unitary or a strict contraction. In the latter case it is uniformly
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stable (i.e. if ||T']| < 1, then ||[T™|| — 0) and so of class Cgg. In both cases both 7" and T™*
have property PF (Proposition 3 and Theorem 1). Therefore, if either T' or T does not
have property PF, then T is nonscalar.

COROLLARY 3.  If neither T nor T* have property PF, then T has a nontrivial
hyperinvariant subspace.

Proor. If a nonscalar contraction 7" has no nontrivial hyperinvariant subspace, then it
is either a Cyg, a Co1 or a Cig contraction (cf. [6]). The claimed result thus follows by
Theorem 1 (it is completely nonunitary and either 7" or T have property PF). ad

“If a transformation intertwines a couple of normal operators, then it also intertwines
their adjoints”. In other words, if N; € B[H| and Ny € B[K] are normal operators, and
if XN; = Ny X for some X € B[H, K], then XNy = NjX. This is the Fuglede-Putnam
Theorem. An important corollary of it reads as follows. If Ny € B[H] and Ny € B[K]
are normal operators, and if X N; = Ny X for some X € B[H,K], then N(X) reduces
Ny, R(X)™ reduces Na, and Ni|n(xyr and Nalg(x)- are unitarily equivalent [2] (see
also [1, p.59]). Here is a couple of natural developments that fit the present context.
Corollary 4 springs up as a counterpart of the above results that focuses on the operator
equation S*XT = X of [2]. Corollary 5 mirrors the intertwinement-preserving property
of the Fuglede-Putnam Theorem.

COROLLARY 4. If Ty € B[H] and Ty € B[K] are contractions with property PF, and if
T, XTy = X for some X € B[H, K], then Ty XT, = X, N(X) reduces Ty, R(X)™ reduces
Ty, and Ti|n(xyr and Ta|g(x)- are unitarily equivalent unitary operators.

Proor. Consider the Nagy-Foiag-Langer decomposition for 77 and T5; that is,
Th=U,&C and T =Uy @ Cy

on H = U, ® Ui- and K = U, ® Us", respectively. With respect to these decompositions
write the transformation X € B[H, K] as a 2x 2 operator matrix, X = (Xij)z"jzlvg, where
X1 € B[ul,u2], X9 € B[Z/{f‘,Z/{Q], Xo1 € B[ul, Z/Ij], and X9y € B[Uf,Uj] Suppose
T, XT} = X so that

Uy X15,CT = Xy, U, X5,C5 = X3, and CyX9oCT = Xos.

If 71 and T have property PF, then C7 and C5 are strongly stable according to
Theorem 1. Observe that C3X5,C" = X,y for every positive integer n. Since C7 is
strongly stable and Cy is a contraction (thus power bounded), C7X,,Ci™ = O so that
X9 is null. Clearly, the same argument also shows that X715 and X3, (and hence Xs)
are null as well (reason: U, and Uy are contractions too). Outcome:

X =X19® 0,

and therefore NV (X) =N (X11) ® Ui~ and R(X)™ = R(X11)” ® {0}. The hypothesis
T,XT] = X also implies U, X{,U{ = X;;. Since U; and Uy are both unitary we get
Us X1,Uy = X4, (so that Ty XT, = X)), and consequently

X11Up = U Xq;.
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But U; and Us; are normal operators. Thus the above italicized corollary of the
Fuglede-Putnam Theorem says that AN(Xi1) reduces Uy, R(X11)~ reduces Us, and
Ullvxant = Ualrix,yy- (ee Uilax,)r and Us|r(x,,)- are unitarily equivalent).
Hence N(X) = N (X11) ® Uit reduces Ty = Uy @ C1, R(X)™ = R(X11)~ @ {0} reduces
TQ = UQ D 02, and

Tilnxyr = Uilnvxns & Ualrxn)- = Talreo-

(for (N(X11) ® UiH)t = N(X11)t = U; © N(X11)), which are unitary (restriction of a
unitary operator to a reducing subspace is again unitary). O

COROLLARY 5. If Ty € B[H] and T € B[K] are contractions with property PF, one
of them being a quasiaffine transform of an isometry, and if X1} =T1,X for some

X € B[H,K], then XT, =T5 X, N(X) reduces T1, R(X)™ reduces Ty, and Th|n(x)-
and T |r(x)- are unitarily equivalent unitary operators.

PrRoOF. Consider the setup of the previous proof. If X7} =T, X, then

Note that X,,C7" = CF X9y and, dually, X35,C5" = CT' X5, for every positive integer n.
Since 77 and T» have property PF, C} and Cj are strongly stable (cf. Theorem 1) so
that X,,C5" = O and X3,C3" - O. Hence CFX,,v1 — 0 for every vy € Ui~ and
Cl' X3ov9 — 0 for every vy € Ush. If Ty or Ty is a quasiaffine transform of an isometry,
then Corollary 2 says that C5 lies in C1g or (' lies in Cqg, respectively. In the former case
Xoov1 = 0 for every vy in Uit In the latter case Xj,vy = 0 for every vg in Us-. In both
cases Xoo is the null transformation. Clearly, the same argument also shows that Xis
and X3, (and so Xs1) are null as well (reason: Us and U; lie in Cq1). This leads to

X =X116 0.

Moreover, the hypothesis X717 = T, X also implies X, U] = Uy X,;. Since Uj and U, are
normal operators, it follows by the Fuglede-Putnam Theorem that

X11U1 = U2*X117

and therefore X7} = T5 X. But U; and U are normal operators too. Thus, proceeding
as in the proof of the previous corollary, N'(X) = N (X11) ® Ui reduces Th = Uy & Cy,
R(X)™ =R(X11)” @ {0} reduces Ty = Uy & C5, and

Tilnveor = Uillveans 2 Uslrxay- = T3 lrex)-

which are unitary operators. O
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