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PROPER CONTRACTIONS AND INVARIANT SUBSPACES

C.S. KuBrusLy AND N. LEVAN

ABSTRACT. Let T be a contraction and let A be the strong limit of {T*"T"},>;. We
prove the following theorem. If a hyponormal contraction T does not have a nontrivial
imvariant subspace, then T is either a proper contraction of class Cog or a monstrict
proper contraction of class Cig for which A is a completely nonprojective nonstrict
proper contraction. Moreover, its self-commutator [T*,T] 18 a strict contraction.
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1. Introduction

Let ‘H be an infinite-dimensional complex Hilbert space. By an operator on H we mean
a bounded linear transformation of H into itself. The null operator and the identity on
‘H will be denoted by O and I, respectively. If T"is an operator, then T is its adjoint,
and [|[T*|| = ||T||]. The null space (kernel) of T, which is the subspace of H, will be
denoted by N (T). A contraction is an operator 7" such that ||T'|| <1 (i.e. ||[Tz|| < ||z|| for
every z in H or, equivalently, 7*T < I). A strict contraction is an operator 7' such that
|T|| < 1 (i.e. supg, ([|[Tx||/||z]]) < 1; equivalently, T*T" < I, which means that T*T < I
for some v € (0,1)). An isometry is a contraction for which ||Tx| = ||z|| for every = in H
(i.e. T*T = I so that ||T|| = 1).

We summarize below some well-known results on contractions that will be applied
throughout the paper (see e.g. [16, p.40], [11], [5], [13], [9], [10] and [8, Ch.3]). If T is
a contraction, then T*"T™ -5 A. That is, the sequence {T*"T"},,>1 of operators on
H converges strongly to an operator A on H, which means that ||[(T*"T" — A)z| — 0
for every = in H. Moreover, A is a nonnegative contraction (i.e. O <A <I), ||[A| =1
whenever A # O, T*"AT™ = A for every integer n>1 (so that T is an isometry if and
only if A=1), |T"z| — ||A"?z]| for every z in H, and the null spaces of A and I — A,
viz. N(A) ={z € H: Az =0} and N(I — A) = {z € H: Az = z}, are given by

N(A) = {zeH: Tz — 0},



NI —A) = {zeH: |T"x| = ||z|| for every n>1} = {z € H: ||Az|| = ||=| }.

Recall that T is a contraction if and only if T*is. Thus T"T*" - A,, where O < A, < I,
|Ax|| = 1 whenever A, # O, T"A, T*" = A, for every n>1 (so that T is a coisometry —
i.e. T* is an isometry — if and only if A, = I), | T*"z| — ||AY?z| for every z in H, and

N(A,) = {zeH: Tz — 0},

NI - A,) = {zeH: |T™z|| = |z for every n>1} = {z € H: ||A.z| = |||}

An operator T" on H is uniformly stable if the power sequence {T™},>1 converges
uniformly to the null operator (i.e. ||T"| — 0). It is strongly stable if {7}, >1 converges
strongly to the null operator (i.e. |[T"x| — 0 for every z in H), and weakly stable if
{T™},>1 converges weakly to the null operator (i.e. (T"x;y) — 0 for every x,y € H or,
equivalently, (T™x;x) — 0 for every x € H). It is clear that uniform stability implies
strong stability, which implies weak stability. The converses fail (a unilateral shift is
a weakly stable isometry and its adjoint is a strongly stable coisometry) but hold for
compact operators. T is uniformly stable if and only if 7" is uniformly stable, and
T is weakly stable if and only if 7™ is weakly stable. However, strong convergence is
not preserved under the adjoint operation so that strong stability for T" does not imply
strong stability for 7% (and vice-versa). If T is a strongly stable contraction (i.e. if
N(A) = H, which means that A = O), then it is usual to say that T is a Cy.-contraction.
If T* is a strongly stable contraction (i.e. if N (A,) = H, which means that A, = O),
then T is a C.g-contraction. On the other extreme, if a contraction 7T is such that
T™x 40 for every nonzero vector x in H (i.e. if N(A) = {0}), then it is said to be a
C;.-contraction. Dually, if a contraction 7" is such that 7*"x - 0 for every nonzero vector
xinH (ie. if N(A,) = {0}), then it is a C.;-contraction. These are the Nagy-Foiag classes
of contractions (see [16, p.72]). All combinations are possible leading to classes Cqg, Co1,
C10 and Cq1. In particular, T and T™ are both strongly stable contractions if and only if
T is of class Cyg. Generally,

TeCyp <<= A=A,=0,

TeCy <<= A=0 and N(A,) = {0},
TeCy <+« N(A)={0 and A, =0,
TeC <<= N(A) =N(A,)={0}.

If T is a strict contraction, then it is uniformly stable, and hence of class Cog. Thus a
contraction not in Cyp is necessarily nonstrict (i.e. if 7' ¢ Coo, then | 7| = 1). In particular,
contractions in C;. or in C.; are nonstrict.

2. Proper Contractions
An operator T is a proper contraction if ||Tz|| < ||z| for every nonzero z in H or,

equivalently, if T*T < I. The terms “strict” and “proper” contractions are sometimes
interchanged in current literature. We adopt the terminology of [7, p.82] for strict



contraction. Obviously, every strict contraction is a proper contraction, every proper
contraction is a contraction, and the converses fail: any isometry is a contraction but
not a proper contraction, and the diagonal operator T' = diag{(k + 1)(k +2)7"}32, is a
proper contraction on 6_% but not a strict contraction. Thus proper contractions comprise
a class of operators that is properly included in the class of all contractions and properly
includes the class of all strict contractions. If 7" is a proper contraction, then so is T*T
(reason: ST is a proper contraction whenever S is a contraction and 7T is a proper
contraction). Thus the point spectrum op(T*T) lies in the open unit disc. If, in addition,
T is compact, then so is T*T and hence its spectrum o(7*T), which is always closed,
also lies in the open unit disc (for o(K)\{0} = op(K)\{0} whenever K is compact). This
implies that the spectral radius r(T*T) is less than one. Therefore, ||T||? = r(T*T) < 1.
Conclusion: the concepts of proper and strict contraction coincide for compact operators.

Proper contractions have been investigated in connection with unitary dilations (the
minimal unitary dilation of a proper contraction is a bilateral shift whose multiplicity
does not exceed the dimension of H — see [16, p.91]), and also with strong stability of
contractive semigroups (cf. [1]). They were further investigated in [15] by considering
different topologies in H. Here are three basic properties of proper contractions that will
be needed in the sequel.

PROPOSITION 1. T is a proper contraction if and only if T* is a proper contraction.

PROOF. Recall that ||[T*z|? = (T*x;T*x) = (TT*z;x) < ||TT*x||||z| for every = in H,
for all operators T on H. Take an arbitrary nonzero vector z in H. If T*x = 0, then
|T*x|| < ||z|| trivially. On the other hand, if 7%z # 0 and T is a proper contraction, then
|TT*x|| < ||T*x|| # 0 so that | T*z||* < || T*x||||z||, and hence | T*z|| < ||z|. That is, T*
is a proper contraction. Dually, since T%* = T', it follows that T is a proper contraction
whenever T™ is. ad

If S is a contraction and T is a proper contraction, then ST is a proper contraction (as
we have already seen above) and so is S*T™* by Proposition 1. Another application of
Proposition 1 ensures that T'S = (S*7T™)* still is a proper contraction. Summing up: left
or right product of a contraction and a proper contraction is again a proper contraction.

PROPOSITION 2. Fuvery proper contraction is weakly stable.

Proor. If ||[Tz| < ||z| for every nonzero x in H, then T is completely nonisometric (i.e.
there is no nonzero reducing subspace M for T such that || T"z| = ||z|| for every z € M
and every n>1), and therefore completely nonunitary. But a completely nonunitary
contraction is weakly stable. In fact, the Foguel decomposition for contractions says that
every contraction is the direct sum of a weakly stable contraction and a unitary operator

(see e.g. [6, p.b5] or [8, p.106]). 0

The converse of Proposition 2 fails: shifts are weakly stable isometries. However, as it
was raised in [1], a proper contraction is not necessarily strongly stable. Indeed, if T
is the weighted unilateral shift 7' = shift{(k + 1)"*(k +2) " (k + 3)"*}32, on £2, which
is a proper contraction because (k+ 1)(k+2)7?(k+3) <1 for every k>0, then A is



4

the diagonal operator A = diag{(k+ 1)(k+2)""}?2, # O (cf. [10] or [8, pp.51,52]) so
that T is not strongly stable. As a matter of fact, N'(A) = {0} and (as it is readily
verified) A, = O. Hence T is a proper contraction of class C1g. The converse is much
simpler: strongly stable contractions are not necessarily proper contractions. For instance,
a backward unilateral shift S} is a strongly stable coisometry (in fact, an operator is a
strongly stable coisometry if and only if it is a backward unilateral shift). Thus S} is a
strongly stable contraction but not a proper contraction (it is a nonproper contraction of
class Co1). Actually, even a Cog-contraction is not necessarily a proper contraction. For
example, the weighted bilateral shift 7' = shift{(|k| +1)""}3>___ on £? is a contraction
of class Coo (reason: [[,_,(|k|+1)~" = (n!)™" — 0 as n — oo, which means that both
products [[,—,(|k| +1)7" and sz_w(|k| +1)7" diverge to 0 — see [3, p.181]) but not
a proper contraction because (|k|+1)"" =1 for £k =0. It is worth noticing that the
weighted bilateral shift 7' = shift{1 — (|k| +2)7*}22___ on ¢? is a proper contraction
of class Cq1. Indeed, 0 <1 — (|k|+2)7® <1 for each integer k, and both products
[Tico( = (Jk] +2)7*) and ng_oo(l — (Jk] +2)7?) do not diverge to 0 (cf. [3, p.181]
again) — these products converge once the series > -, (|k| +2)~* converges.

ProprosiTION 3. If T is a proper contraction, then A is a proper contraction.

Proor. Let T be a proper contraction and take an arbitrary nonzero vector x in H.
If Tz = 0 for some m >1, then 7"z = 0 for every integer n>m. If T"z # 0 for every
integer n >1, then ||[T" M z| = |TT"z| < ||T"x| < ||z|| so that {||T™z|},>1 is a strictly
decreasing sequence of positive numbers. In the former case T is trivially strongly stable
so that A = O, a trivial proper contraction. In the latter case {||T"x| },>1 converges in
the real line to ||A"?z| so that |A"’z|| < ||z||. Thus ||Az| < [|[A"*z| < ||z]|. 0

A backward unilateral shift shows that the converse of Proposition 3 does not hold true
as well (i.e. there exist nonproper contractions T for which A is a proper contraction).

3. Invariant Subspaces

A subspace M of H is a closed linear manifold of H. M is nontrivial if {0} # M # H. If
T is an operator on H and T'(M) C M, then M is invariant for 7" (or M is T-invariant).
If M is a nontrivial invariant subspace for T, then its orthogonal complement M= is a
nontrivial invariant subspace for T*. If M is invariant for both 7" and T™* (equivalently,
if both M and M+ are T-invariant), then M reduces T. A classical open question in
operator theory is: does a contraction not in Cop have a nontrivial invariant subspace?
Although this is still an unsolved problem we know that the following result holds true.

LEMMA 1. If a contraction has no nontrivial invariant subspace, then it is either a Cog,
a Co1, or a Cig-contraction.
PROOF. See, for instance, [8, p.71]. O

The class of contractions T for which A is a projection was investigated in [4] and [10]. It
coincides with the class of all contractions 7" that commute with A; that is, A = A? if and
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only if AT = TA (cf. [4]). Equivalently, N'(A — A%) = H if and only if N (AT — TA) = H.
The next proposition extends this equivalence.

PROPOSITION 4. N(A — A?) is the largest subspace of H that is included in N'(AT — T A)
and is T-invariant.

PRrROOF. See [10] (or [8, p.52]). 0

We shall say that A is completely nonprojective if Ax # A%z for every nonzero x in ‘H (i.e.
if N(A— A?%) ={0}). Since N (A — A?) reduces the self-adjoint operator A, this means
that no nonzero direct summand of A is a projection. If A is completely nonprojective,
then T is a Cy.-contraction (for N'(4A) C N(A — A?)).

LEMMA 2. If a contraction T has no nontrivial invariant subspace, then either T is
strongly stable or A is a completely nonprojective nonstrict proper contraction.

PROOF. Suppose T is a contraction without a nontrivial invariant subspace. Since
N(A — A?) is an invariant subspace for T' (by Proposition 4), it follows that either
N(A— A?)="Hor N(A — A?) = {0}. In the former case A is a projection (i.e. A = A?).
However, as it was shown in [10], if A is a projection then 7" is the direct sum of a strongly
stable contraction G, a unilateral shift S|, and a unitary operator U, where any of the
direct summands of the decomposition

may be missing (see also [8, p.83]). But 7" has no nontrivial invariant subspace so that
T = G. That is, T is a strongly stable contraction, for S, and U clearly have nontrivial
invariant subspaces (isometries have nontrivial invariant subspaces). In the latter case

A is a completely nonprojective proper contraction. Indeed, {z € H: ||Az| = |z|} =
N(I —A) C N(A— A?)={0}. Finally, the contraction A is not strict (i.e. |A|| = 1)
whenever T is not strongly stable (i.e. whenever A # O). O

Another classical open question in operator theory is: does a hyponormal operator
have a nontrivial invariant subspace? Recall that an operator T" on H is hyponormal if
TT* <T*T (equivalently, if || T*z| < ||Tz| for every z in H), and T is cohyponormal if
T* is hyponormal. Here is a consequence of Lemmas 1 and 2 for hyponormal contractions.
It uses the fact that a cohyponormal contraction T is such that A is a projection. This

implies that a completely nonunitary cohyponormal contraction is strongly stable (cf.
[14], [12] and [9]).

THEOREM 1. If a hyponormal contraction T has no nontrivial invariant subspace, then it
is either a Cog-contraction or a Cig-contraction for which A is a completely nonprojective
nonstrict proper contraction.

Proor. If T has no nontrivial invariant subspace, then T has no nontrivial invariant
subspace. If T is a contraction, then Lemmas 1 and 2 ensure that either A = A, = O,
A =0 and A, is a completely nonprojective nonstrict proper contraction, or A is a



completely nonprojective nonstrict proper contraction and A, = O. However, if T is
hyponormal, then A, is a projection [9] so that A, = O (see also [8, p.78]). O

Can the conclusion in Theorem 1 be sharpened to T € Coo? In other words, does a
hyponormal contraction not in Cog have a nontrivial invariant subspace? The question
has an affirmative answer if we replace “Cgg-contraction” with “proper contraction”.
That is, if a hyponormal contraction is not a proper contraction, then it has a nontrivial
invariant subspace. This will be proved in Theorem 2 below, but first we consider the
following auxiliary result. Let D denote the self-commutator of T'; that is,

D = [T"T] = T*T — TT".
Thus a hyponormal is precisely an operator T' for which D is nonnegative (i.e. D > O).

ProprosITION 5. If T is a hyponormal contraction, then D is a contraction whose power
sequence converges strongly. If P is the strong limit of {D"},>1, then PT = O.

Proor. Take an arbitrary x in H and an arbitrary nonnegative integer n. Suppose T is
hyponormal and let R = D”? > O be the unique nonnegative square root of D > O. If,
in addition, 7" is a contraction, then

(D"*lwia) = |R"™ || = (DR"z;R"z) = ||TR"z|* — ||T"R"«|”
< [R"|* — IT"R"=|* < [|[R"z|* = (D"x; ).

This shows that R (and so D) is a contraction: set n =0 above. It also shows that
{D"},>11s a decreasing sequence of nonnegative contractions. Since a bounded monotone
sequence of self-adjoint operators converges strongly,

D" =5 P> 0.
Indeed, the strong limit P of {D"},>1 is nonnegative, for the set of all nonnegative
operators on H is weakly (thus strongly) closed. As a matter of fact, P = P? (the

weak limit of any weakly convergent power sequence is idempotent) and so P > O is
a projection. Moreover,

D ATR | < Y (IR |® = [|R" ' z)?) = ||z[* — |R"'2|* < |||
n=0 n=0
for all m >0 so that |T*R"z|| — 0 as n — oo. Hence
T*Pzr = T*lim D"z = limT*R*'z = 0
for every x in H, and therefore PT = O (since P is self-adjoint). O

THEOREM 2. If a hyponormal contraction has no nontrivial invariant subspace, then it
18 a proper contraction and its self-commutator is a strict contraction.



PrOOF. (a) Take an arbitrary operator 7' on ‘H and arbitrary x in H. Note that
T*Tx = ||T||?x if and only if || Tz| = ||T| |l

Indeed, if T*Tx = ||T||?x, then ||Tx|? = (T*Tx;z) = ||T||?||z]|?>. Conversely, if ||Tx| =
|T|[||z||, then (T*Tx; ||T||?z) = ||T||*||z||> and hence

|IT*Tx — | T|*2|* = |T*Tx|® — 2Re{T"Ta; | T|*x) + | T]|*||=]*
= |T°T|)* = |T|*=)* < (17T = ITI*) |=]]* = ©.

Put M = {x € H: |Tz| = |T||l|z]|} = N(|T||*I — T*T), which is a subspace of H. If T
is hyponormal, then M is T-invariant. In fact, if 7" is hyponormal and x € M, then

IT(T)| < ITIT=]| = [Tz = [T Tl < [IT(T)|

and so Tz € M (see also [6, p.9]). Now let 7" be a hyponormal contraction. If ||| < 1,
then it is trivially a proper contraction. If | 7|| =1 and 7" has no nontrivial invariant
subspace, then M = {z € H: ||[Tz| = ||z||} = {0} (actually, if M =H, then T is an
isometry and isometries have invariant subspaces). Hence T is a proper contraction.

(b) Let D > O be the self-commutator of a hyponormal contraction 7" and let P be
the strong limit of {D"},,>1 so that PT = O (cf. Proposition 5). Suppose T' has no
nontrivial invariant subspace. Since NV(P) is a nonzero invariant subspace for 7' whenever
PT =0 and T # O, it follows that N (P)="H. Hence P =0 and so D is strongly
stable (D™ == O). Moreover, since \/{T"z},>0 is a nonzero invariant subspace for T'
whenever z # 0, it follows that \/{T"z},>¢ = H for each = # 0 (every nonzero vector in
H is a cyclic vector for T'). Thus the Berger-Shaw Theorem (see, for instance, [2, p.152])
ensures that D is a trace-class operator so that D is compact (i.e. 7" is essentially normal).
But for compact operators strong stability coincides with uniform stability, and uniform
stability always means spectral radius less than one. Hence the nonnegative D is a strict
contraction because it is clearly normaloid (i.e. ||[D|| = (D) < 1). 0

Remark: According to the Berger-Shaw Theorem a hyponormal contraction without
a nontrivial invariant subspace has a trace-class self-commutator D with trace-norm
|D||; <1. If D# O is not a rank-one operator, then ||D| < ||D||; <1. The above
argument ensures the inequality ||D|| < 1 whenever a hyponormal contraction has no
nontrivial invariant subspace, including the case of a hyponormal contraction with a
rank-one self-commutator.

An operator is seminormal if it is hyponormal or cohyponormal. Recall that T* has
a nontrivial invariant subspace if and only if 7" has, T™ is a proper contraction if and
only if T" is (Proposition 1), and [T, 7] = —[T*,T]. Thus the above theorem also holds
for cohyponormal contractions. If a seminormal contraction has no nontrivial invariant
subspace, then it is a proper contraction and its self-commutator is a strict contraction.
This prompts the question: can we drop “hyponormal” from the theorem statement? In
particular, is it true that every nonproper contraction has a nontrivial invariant subspace?
Theorems 1 and 2 yield the following result.



COROLLARY 1. If a hyponormal contraction T has no nontrivial invariant subspace, then
it is either a proper contraction of class Cog or a nonstrict proper contraction of class
C1o for which A is a completely nonprojective nonstrict proper contraction. Moreover, its
self-commutator [T*,T| is a strict contraction.
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