PROPER CONTRACTIONS AND INVARIANT SUBSPACES

C.S. Kubrusly and N. Levan

ABSTRACT. Let T be a contraction and let A be the strong limit of $\{T^{*n}T^n\}_{n\geq 1}$. We prove the following theorem. If a hyponormal contraction T does not have a nontrivial invariant subspace, then T is either a proper contraction of class C_{00} or a nonstrict proper contraction of class C_{10} for which A is a completely nonprojective nonstrict proper contraction. Moreover, its self-commutator $[T^*,T]$ is a strict contraction.

Keywords: Hyponormal operators, invariant subspaces, proper contractions.

AMS Subject Classification: 47A15; 47B20.

1. Introduction

Let \mathcal{H} be an infinite-dimensional complex Hilbert space. By an operator on \mathcal{H} we mean a bounded linear transformation of \mathcal{H} into itself. The null operator and the identity on \mathcal{H} will be denoted by O and I, respectively. If T is an operator, then T^* is its adjoint, and $||T^*|| = ||T||$. The null space (kernel) of T, which is the subspace of \mathcal{H} , will be denoted by $\mathcal{N}(T)$. A contraction is an operator T such that $||T|| \le 1$ (i.e. $||Tx|| \le ||x||$ for every x in \mathcal{H} or, equivalently, $T^*T \le I$). A strict contraction is an operator T such that ||T|| < 1 (i.e. $\sup_{0 \ne x} (||Tx||/||x||) < 1$; equivalently, $T^*T \prec I$, which means that $T^*T \le \gamma I$ for some $\gamma \in (0,1)$). An isometry is a contraction for which ||Tx|| = ||x|| for every x in \mathcal{H} (i.e. $T^*T = I$ so that ||T|| = 1).

We summarize below some well-known results on contractions that will be applied throughout the paper (see e.g. [16, p.40], [11], [5], [13], [9], [10] and [8, Ch.3]). If T is a contraction, then $T^{*n}T^n \stackrel{s}{\longrightarrow} A$. That is, the sequence $\{T^{*n}T^n\}_{n\geq 1}$ of operators on \mathcal{H} converges strongly to an operator A on \mathcal{H} , which means that $\|(T^{*n}T^n - A)x\| \to 0$ for every x in \mathcal{H} . Moreover, A is a nonnegative contraction (i.e. $O \leq A \leq I$), $\|A\| = 1$ whenever $A \neq O$, $T^{*n}AT^n = A$ for every integer $n \geq 1$ (so that T is an isometry if and only if A = I), $\|T^nx\| \to \|A^{1/2}x\|$ for every x in \mathcal{H} , and the null spaces of A and A = I, viz. $\mathcal{N}(A) = \{x \in \mathcal{H}: Ax = 0\}$ and $\mathcal{N}(I - A) = \{x \in \mathcal{H}: Ax = x\}$, are given by

$$\mathcal{N}(A) = \{ x \in \mathcal{H} : \ T^n x \to 0 \},$$

$$\mathcal{N}(I - A) = \{x \in \mathcal{H}: ||T^n x|| = ||x|| \text{ for every } n \ge 1\} = \{x \in \mathcal{H}: ||Ax|| = ||x||\}.$$

Recall that T is a contraction if and only if T^* is. Thus $T^nT^{*n} \stackrel{s}{\longrightarrow} A_*$, where $O \leq A_* \leq I$, $||A_*|| = 1$ whenever $A_* \neq O$, $T^nA_*T^{*n} = A_*$ for every $n \geq 1$ (so that T is a coisometry—i.e. T^* is an isometry—if and only if $A_* = I$), $||T^{*n}x|| \to ||A_*^{1/2}x||$ for every x in \mathcal{H} , and

$$\mathcal{N}(A_*) = \{ x \in \mathcal{H} : T^{*n}x \to 0 \},$$

$$\mathcal{N}(I - A_*) = \{ x \in \mathcal{H} : ||T^{*n}x|| = ||x|| \text{ for every } n \ge 1 \} = \{ x \in \mathcal{H} : ||A_*x|| = ||x|| \}.$$

An operator T on \mathcal{H} is uniformly stable if the power sequence $\{T^n\}_{n\geq 1}$ converges uniformly to the null operator (i.e. $||T^n|| \to 0$). It is strongly stable if $\{T^n\}_{n\geq 1}$ converges strongly to the null operator (i.e. $||T^nx|| \to 0$ for every x in \mathcal{H}), and weakly stable if $\{T^n\}_{n\geq 1}$ converges weakly to the null operator (i.e. $\langle T^nx;y\rangle\to 0$ for every $x,y\in\mathcal{H}$ or, equivalently, $\langle T^n x; x \rangle \to 0$ for every $x \in \mathcal{H}$). It is clear that uniform stability implies strong stability, which implies weak stability. The converses fail (a unilateral shift is a weakly stable isometry and its adjoint is a strongly stable coisometry) but hold for compact operators. T is uniformly stable if and only if T^* is uniformly stable, and T is weakly stable if and only if T^* is weakly stable. However, strong convergence is not preserved under the adjoint operation so that strong stability for T does not imply strong stability for T^* (and vice-versa). If T is a strongly stable contraction (i.e. if $\mathcal{N}(A) = \mathcal{H}$, which means that A = O, then it is usual to say that T is a \mathcal{C}_0 -contraction. If T^* is a strongly stable contraction (i.e. if $\mathcal{N}(A_*) = \mathcal{H}$, which means that $A_* = O$), then T is a $\mathcal{C}_{\cdot 0}$ -contraction. On the other extreme, if a contraction T is such that $T^n x \to 0$ for every nonzero vector x in \mathcal{H} (i.e. if $\mathcal{N}(A) = \{0\}$), then it is said to be a \mathcal{C}_1 -contraction. Dually, if a contraction T is such that $T^{*n}x \to 0$ for every nonzero vector x in \mathcal{H} (i.e. if $\mathcal{N}(A_*) = \{0\}$), then it is a $\mathcal{C}_{\cdot 1}$ -contraction. These are the Nagy-Foiaş classes of contractions (see [16, p.72]). All combinations are possible leading to classes \mathcal{C}_{00} , \mathcal{C}_{01} , \mathcal{C}_{10} and \mathcal{C}_{11} . In particular, T and T^* are both strongly stable contractions if and only if T is of class \mathcal{C}_{00} . Generally,

$$T \in \mathcal{C}_{00} \iff A = A_* = O,$$

 $T \in \mathcal{C}_{01} \iff A = O \text{ and } \mathcal{N}(A_*) = \{0\},$
 $T \in \mathcal{C}_{10} \iff \mathcal{N}(A) = \{0\} \text{ and } A_* = O,$
 $T \in \mathcal{C}_{11} \iff \mathcal{N}(A) = \mathcal{N}(A_*) = \{0\}.$

If T is a strict contraction, then it is uniformly stable, and hence of class C_{00} . Thus a contraction not in C_{00} is necessarily nonstrict (i.e. if $T \notin C_{00}$, then ||T|| = 1). In particular, contractions in C_1 or in $C_{\cdot 1}$ are nonstrict.

2. Proper Contractions

An operator T is a proper contraction if ||Tx|| < ||x|| for every nonzero x in \mathcal{H} or, equivalently, if $T^*T < I$. The terms "strict" and "proper" contractions are sometimes interchanged in current literature. We adopt the terminology of [7, p.82] for strict

contraction. Obviously, every strict contraction is a proper contraction, every proper contraction is a contraction, and the converses fail: any isometry is a contraction but not a proper contraction, and the diagonal operator $T = \text{diag}\{(k+1)(k+2)^{-1}\}_{k=0}^{\infty}$ is a proper contraction on ℓ_+^2 but not a strict contraction. Thus proper contractions comprise a class of operators that is properly included in the class of all contractions and properly includes the class of all strict contractions. If T is a proper contraction, then so is T^*T (reason: ST is a proper contraction whenever S is a contraction and T is a proper contraction). Thus the point spectrum $\sigma_P(T^*T)$ lies in the open unit disc. If, in addition, T is compact, then so is T^*T and hence its spectrum $\sigma(T^*T)$, which is always closed, also lies in the open unit disc (for $\sigma(K)\setminus\{0\} = \sigma_P(K)\setminus\{0\}$ whenever K is compact). This implies that the spectral radius $r(T^*T)$ is less than one. Therefore, $||T||^2 = r(T^*T) < 1$. Conclusion: the concepts of proper and strict contraction coincide for compact operators.

Proper contractions have been investigated in connection with unitary dilations (the minimal unitary dilation of a proper contraction is a bilateral shift whose multiplicity does not exceed the dimension of \mathcal{H} — see [16, p.91]), and also with strong stability of contractive semigroups (cf. [1]). They were further investigated in [15] by considering different topologies in \mathcal{H} . Here are three basic properties of proper contractions that will be needed in the sequel.

Proposition 1. T is a proper contraction if and only if T^* is a proper contraction.

PROOF. Recall that $||T^*x||^2 = \langle T^*x; T^*x \rangle = \langle TT^*x; x \rangle \leq ||TT^*x|| ||x||$ for every x in \mathcal{H} , for all operators T on \mathcal{H} . Take an arbitrary nonzero vector x in \mathcal{H} . If $T^*x = 0$, then $||T^*x|| < ||x||$ trivially. On the other hand, if $T^*x \neq 0$ and T is a proper contraction, then $||TT^*x|| < ||T^*x|| \neq 0$ so that $||T^*x||^2 < ||T^*x|| ||x||$, and hence $||T^*x|| < ||x||$. That is, T^* is a proper contraction. Dually, since $T^{**} = T$, it follows that T is a proper contraction whenever T^* is.

If S is a contraction and T is a proper contraction, then ST is a proper contraction (as we have already seen above) and so is S^*T^* by Proposition 1. Another application of Proposition 1 ensures that $TS = (S^*T^*)^*$ still is a proper contraction. Summing up: left or right product of a contraction and a proper contraction is again a proper contraction.

Proposition 2. Every proper contraction is weakly stable.

PROOF. If ||Tx|| < ||x|| for every nonzero x in \mathcal{H} , then T is completely nonisometric (i.e. there is no nonzero reducing subspace \mathcal{M} for T such that $||T^nx|| = ||x||$ for every $x \in \mathcal{M}$ and every $n \ge 1$), and therefore completely nonunitary. But a completely nonunitary contraction is weakly stable. In fact, the Foguel decomposition for contractions says that every contraction is the direct sum of a weakly stable contraction and a unitary operator (see e.g. [6, p.55] or [8, p.106]).

The converse of Proposition 2 fails: shifts are weakly stable isometries. However, as it was raised in [1], a proper contraction is not necessarily strongly stable. Indeed, if T is the weighted unilateral shift $T = \text{shift}\{(k+1)^{1/2}(k+2)^{-1}(k+3)^{1/2}\}_{k=0}^{\infty}$ on ℓ_+^2 , which is a proper contraction because $(k+1)(k+2)^{-2}(k+3) < 1$ for every $k \ge 0$, then A is

the diagonal operator $A = \operatorname{diag}\{(k+1)(k+2)^{-1}\}_{k=0}^{\infty} \neq O$ (cf. [10] or [8, pp.51,52]) so that T is not strongly stable. As a matter of fact, $\mathcal{N}(A) = \{0\}$ and (as it is readily verified) $A_* = O$. Hence T is a proper contraction of class \mathcal{C}_{10} . The converse is much simpler: strongly stable contractions are not necessarily proper contractions. For instance, a backward unilateral shift S_+^* is a strongly stable coisometry (in fact, an operator is a strongly stable coisometry if and only if it is a backward unilateral shift). Thus S_+^* is a strongly stable contraction but not a proper contraction (it is a nonproper contraction of class \mathcal{C}_{01}). Actually, even a \mathcal{C}_{00} -contraction is not necessarily a proper contraction. For example, the weighted bilateral shift $T = \sinhift\{(|k|+1)^{-1}\}_{k=-\infty}^{\infty}$ on ℓ^2 is a contraction of class \mathcal{C}_{00} (reason: $\prod_{k=0}^{n}(|k|+1)^{-1}=(n!)^{-1}\to 0$ as $n\to\infty$, which means that both products $\prod_{k=0}^{\infty}(|k|+1)^{-1}$ and $\prod_{k=-\infty}^{0}(|k|+1)^{-1}$ diverge to 0— see [3, p.181]) but not a proper contraction because $(|k|+1)^{-1}=1$ for k=0. It is worth noticing that the weighted bilateral shift $T=\sinhift\{1-(|k|+2)^{-2}\}_{k=-\infty}^{\infty}$ on ℓ^2 is a proper contraction of class \mathcal{C}_{11} . Indeed, $0<1-(|k|+2)^{-2}<1$ for each integer k, and both products $\prod_{k=0}^{\infty}(1-(|k|+2)^{-2})$ and $\prod_{k=-\infty}^{0}(1-(|k|+2)^{-2})$ do not diverge to 0 (cf. [3, p.181] again) — these products converge once the series $\sum_{k=0}^{\infty}(|k|+2)^{-2}$ converges.

Proposition 3. If T is a proper contraction, then A is a proper contraction.

PROOF. Let T be a proper contraction and take an arbitrary nonzero vector x in \mathcal{H} . If $T^mx = 0$ for some $m \ge 1$, then $T^nx = 0$ for every integer $n \ge m$. If $T^nx \ne 0$ for every integer $n \ge 1$, then $||T^{n+1}x|| = ||TT^nx|| < ||T^nx|| < ||x||$ so that $\{||T^nx||\}_{n\ge 1}$ is a strictly decreasing sequence of positive numbers. In the former case T is trivially strongly stable so that A = O, a trivial proper contraction. In the latter case $\{||T^nx||\}_{n\ge 1}$ converges in the real line to $||A^{1/2}x||$ so that $||A^{1/2}x|| < ||x||$. Thus $||Ax|| \le ||A^{1/2}x|| < ||x||$.

A backward unilateral shift shows that the converse of Proposition 3 does not hold true as well (i.e. there exist nonproper contractions T for which A is a proper contraction).

3. Invariant Subspaces

A subspace \mathcal{M} of \mathcal{H} is a closed linear manifold of \mathcal{H} . \mathcal{M} is nontrivial if $\{0\} \neq \mathcal{M} \neq \mathcal{H}$. If T is an operator on \mathcal{H} and $T(\mathcal{M}) \subseteq \mathcal{M}$, then \mathcal{M} is invariant for T (or \mathcal{M} is T-invariant). If \mathcal{M} is a nontrivial invariant subspace for T, then its orthogonal complement \mathcal{M}^{\perp} is a nontrivial invariant subspace for T^* . If \mathcal{M} is invariant for both T and T^* (equivalently, if both \mathcal{M} and \mathcal{M}^{\perp} are T-invariant), then \mathcal{M} reduces T. A classical open question in operator theory is: does a contraction not in \mathcal{C}_{00} have a nontrivial invariant subspace? Although this is still an unsolved problem we know that the following result holds true.

LEMMA 1. If a contraction has no nontrivial invariant subspace, then it is either a C_{00} , a C_{01} , or a C_{10} -contraction.

PROOF. See, for instance, [8, p.71].

The class of contractions T for which A is a projection was investigated in [4] and [10]. It coincides with the class of all contractions T that commute with A; that is, $A = A^2$ if and

only if AT = TA (cf. [4]). Equivalently, $\mathcal{N}(A - A^2) = \mathcal{H}$ if and only if $\mathcal{N}(AT - TA) = \mathcal{H}$. The next proposition extends this equivalence.

PROPOSITION 4. $\mathcal{N}(A-A^2)$ is the largest subspace of \mathcal{H} that is included in $\mathcal{N}(AT-TA)$ and is T-invariant.

PROOF. See [10] (or
$$[8, p.52]$$
).

We shall say that A is completely nonprojective if $Ax \neq A^2x$ for every nonzero x in \mathcal{H} (i.e. if $\mathcal{N}(A-A^2)=\{0\}$). Since $\mathcal{N}(A-A^2)$ reduces the self-adjoint operator A, this means that no nonzero direct summand of A is a projection. If A is completely nonprojective, then T is a \mathcal{C}_1 -contraction (for $\mathcal{N}(A)\subseteq\mathcal{N}(A-A^2)$).

LEMMA 2. If a contraction T has no nontrivial invariant subspace, then either T is strongly stable or A is a completely nonprojective nonstrict proper contraction.

PROOF. Suppose T is a contraction without a nontrivial invariant subspace. Since $\mathcal{N}(A-A^2)$ is an invariant subspace for T (by Proposition 4), it follows that either $\mathcal{N}(A-A^2) = \mathcal{H}$ or $\mathcal{N}(A-A^2) = \{0\}$. In the former case A is a projection (i.e. $A = A^2$). However, as it was shown in [10], if A is a projection then T is the direct sum of a strongly stable contraction G, a unilateral shift S_+ , and a unitary operator U, where any of the direct summands of the decomposition

$$T = G \oplus S_+ \oplus U$$

may be missing (see also [8, p.83]). But T has no nontrivial invariant subspace so that T = G. That is, T is a strongly stable contraction, for S_+ and U clearly have nontrivial invariant subspaces (isometries have nontrivial invariant subspaces). In the latter case A is a completely nonprojective proper contraction. Indeed, $\{x \in \mathcal{H}: ||Ax|| = ||x||\} = \mathcal{N}(I - A) \subseteq \mathcal{N}(A - A^2) = \{0\}$. Finally, the contraction A is not strict (i.e. ||A|| = 1) whenever T is not strongly stable (i.e. whenever $A \neq O$).

Another classical open question in operator theory is: does a hyponormal operator have a nontrivial invariant subspace? Recall that an operator T on \mathcal{H} is hyponormal if $TT^* \leq T^*T$ (equivalently, if $||T^*x|| \leq ||Tx||$ for every x in \mathcal{H}), and T is cohyponormal if T^* is hyponormal. Here is a consequence of Lemmas 1 and 2 for hyponormal contractions. It uses the fact that a cohyponormal contraction T is such that A is a projection. This implies that a completely nonunitary cohyponormal contraction is strongly stable (cf. [14], [12] and [9]).

THEOREM 1. If a hyponormal contraction T has no nontrivial invariant subspace, then it is either a C_{00} -contraction or a C_{10} -contraction for which A is a completely nonprojective nonstrict proper contraction.

PROOF. If T has no nontrivial invariant subspace, then T^* has no nontrivial invariant subspace. If T is a contraction, then Lemmas 1 and 2 ensure that either $A = A_* = O$, A = O and A_* is a completely nonprojective nonstrict proper contraction, or A is a

completely nonprojective nonstrict proper contraction and $A_* = O$. However, if T is hyponormal, then A_* is a projection [9] so that $A_* = O$ (see also [8, p.78]).

Can the conclusion in Theorem 1 be sharpened to $T \in \mathcal{C}_{00}$? In other words, does a hyponormal contraction not in \mathcal{C}_{00} have a nontrivial invariant subspace? The question has an affirmative answer if we replace " \mathcal{C}_{00} -contraction" with "proper contraction". That is, if a hyponormal contraction is not a proper contraction, then it has a nontrivial invariant subspace. This will be proved in Theorem 2 below, but first we consider the following auxiliary result. Let D denote the self-commutator of T; that is,

$$D = [T^*, T] = T^*T - TT^*.$$

Thus a hyponormal is precisely an operator T for which D is nonnegative (i.e. $D \ge O$).

PROPOSITION 5. If T is a hyponormal contraction, then D is a contraction whose power sequence converges strongly. If P is the strong limit of $\{D^n\}_{n\geq 1}$, then PT=O.

PROOF. Take an arbitrary x in \mathcal{H} and an arbitrary nonnegative integer n. Suppose T is hyponormal and let $R = D^{1/2} \geq O$ be the unique nonnegative square root of $D \geq O$. If, in addition, T is a contraction, then

$$\langle D^{n+1}x; x \rangle = \|R^{n+1}x\|^2 = \langle DR^nx; R^nx \rangle = \|TR^nx\|^2 - \|T^*R^nx\|^2$$

$$\leq \|R^nx\|^2 - \|T^*R^nx\|^2 \leq \|R^nx\|^2 = \langle D^nx; x \rangle.$$

This shows that R (and so D) is a contraction: set n = 0 above. It also shows that $\{D^n\}_{n\geq 1}$ is a decreasing sequence of nonnegative contractions. Since a bounded monotone sequence of self-adjoint operators converges strongly,

$$D^n \xrightarrow{s} P > O$$
.

Indeed, the strong limit P of $\{D^n\}_{n\geq 1}$ is nonnegative, for the set of all nonnegative operators on \mathcal{H} is weakly (thus strongly) closed. As a matter of fact, $P=P^2$ (the weak limit of any weakly convergent power sequence is idempotent) and so $P\geq O$ is a projection. Moreover,

$$\sum_{n=0}^{m} \|T^*R^n x\|^2 \le \sum_{n=0}^{m} (\|R^n x\|^2 - \|R^{n+1} x\|^2) = \|x\|^2 - \|R^{m+1} x\|^2 \le \|x\|^2$$

for all $m \ge 0$ so that $||T^*R^nx|| \to 0$ as $n \to \infty$. Hence

$$T^*Px = T^* \lim_n D^n x = \lim_n T^*R^{2n} x = 0$$

for every x in \mathcal{H} , and therefore PT = O (since P is self-adjoint).

THEOREM 2. If a hyponormal contraction has no nontrivial invariant subspace, then it is a proper contraction and its self-commutator is a strict contraction.

PROOF. (a) Take an arbitrary operator T on \mathcal{H} and arbitrary x in \mathcal{H} . Note that

$$T^*Tx = ||T||^2x$$
 if and only if $||Tx|| = ||T|| ||x||$.

Indeed, if $T^*Tx = ||T||^2x$, then $||Tx||^2 = \langle T^*Tx; x \rangle = ||T||^2||x||^2$. Conversely, if ||Tx|| = ||T|| ||x||, then $\langle T^*Tx; ||T||^2x \rangle = ||T||^4 ||x||^2$ and hence

$$||T^*Tx - ||T||^2x||^2 = ||T^*Tx||^2 - 2\operatorname{Re}\langle T^*Tx; ||T||^2x\rangle + ||T||^4||x||^2$$
$$= ||T^*Tx||^2 - ||T||^4||x||^2 \le (||T^*T||^2 - ||T||^4)||x||^2 = 0.$$

Put $\mathcal{M} = \{x \in \mathcal{H}: ||Tx|| = ||T|| ||x||\} = \mathcal{N}(||T||^2 I - T^*T)$, which is a subspace of \mathcal{H} . If T is hyponormal, then \mathcal{M} is T-invariant. In fact, if T is hyponormal and $x \in \mathcal{M}$, then

$$||T(Tx)|| \le ||T|| ||Tx|| = |||T||^2 x || = ||T^*Tx|| \le ||T(Tx)||$$

and so $Tx \in \mathcal{M}$ (see also [6, p.9]). Now let T be a hyponormal contraction. If ||T|| < 1, then it is trivially a proper contraction. If ||T|| = 1 and T has no nontrivial invariant subspace, then $\mathcal{M} = \{x \in \mathcal{H}: ||Tx|| = ||x||\} = \{0\}$ (actually, if $\mathcal{M} = \mathcal{H}$, then T is an isometry and isometries have invariant subspaces). Hence T is a proper contraction.

(b) Let $D \geq O$ be the self-commutator of a hyponormal contraction T and let P be the strong limit of $\{D^n\}_{n\geq 1}$ so that PT = O (cf. Proposition 5). Suppose T has no nontrivial invariant subspace. Since $\mathcal{N}(P)$ is a nonzero invariant subspace for T whenever PT = O and $T \neq O$, it follows that $\mathcal{N}(P) = \mathcal{H}$. Hence P = O and so D is strongly stable $(D^n \xrightarrow{s} O)$. Moreover, since $\bigvee \{T^n x\}_{n\geq 0}$ is a nonzero invariant subspace for T whenever $x \neq 0$, it follows that $\bigvee \{T^n x\}_{n\geq 0} = \mathcal{H}$ for each $x \neq 0$ (every nonzero vector in \mathcal{H} is a cyclic vector for T). Thus the Berger-Shaw Theorem (see, for instance, [2, p.152]) ensures that D is a trace-class operator so that D is compact (i.e. T is essentially normal). But for compact operators strong stability coincides with uniform stability, and uniform stability always means spectral radius less than one. Hence the nonnegative D is a strict contraction because it is clearly normaloid (i.e. ||D|| = r(D) < 1).

Remark: According to the Berger-Shaw Theorem a hyponormal contraction without a nontrivial invariant subspace has a trace-class self-commutator D with trace-norm $||D||_1 \le 1$. If $D \ne O$ is not a rank-one operator, then $||D|| < ||D||_1 \le 1$. The above argument ensures the inequality ||D|| < 1 whenever a hyponormal contraction has no nontrivial invariant subspace, including the case of a hyponormal contraction with a rank-one self-commutator.

An operator is seminormal if it is hyponormal or cohyponormal. Recall that T^* has a nontrivial invariant subspace if and only if T has, T^* is a proper contraction if and only if T is (Proposition 1), and $[T,T^*]=-[T^*,T]$. Thus the above theorem also holds for cohyponormal contractions. If a seminormal contraction has no nontrivial invariant subspace, then it is a proper contraction and its self-commutator is a strict contraction. This prompts the question: can we drop "hyponormal" from the theorem statement? In particular, is it true that every nonproper contraction has a nontrivial invariant subspace? Theorems 1 and 2 yield the following result.

COROLLARY 1. If a hyponormal contraction T has no nontrivial invariant subspace, then it is either a proper contraction of class C_{00} or a nonstrict proper contraction of class C_{10} for which A is a completely nonprojective nonstrict proper contraction. Moreover, its self-commutator $[T^*, T]$ is a strict contraction.

References

- 1. K.N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups, Studia Sci. Math. Hungar. **30** (1995) 165–182.
- 2. J.B. Conway, *The Theory of Subnormal Operators* (Mathematical Surveys and Monographs Vol. 36, Amer. Math. Soc., Providence, 1991).
- 3. R.G. DOUGLAS, Canonical models, *Topics in Operator Theory* (Mathematical Surveys No. 13, Amer. Math. Soc., Providence, 2nd pr. 1979) 161–218.
- 4. B.P. Dugall, On unitary parts of contractions, *Indian J. Pure Appl. Math.* **25** (1994) 1243–1247.
- 5. E. Durszt, Contractions as restricted shifts, Acta Sci. Math. (Szeged) 48 (1985) 129–134.
- 6. P.A. FILLMORE, Notes in Operator Theory (Van Nostrand, New York, 1970).
- 7. P.R. HALMOS, A Hilbert Space Problem Book, 2nd edn. (Springer, New York, 1982).
- 8. C.S. Kubrusly, An Introduction to Models and Decompositions in Operator Theory (Birkhäuser, Boston, 1997).
- 9. C.S. Kubrusly and P.C.M. Vieira, Strong stability for cohyponormal operators, *J. Operator Theory* **31** (1994) 123–127.
- 10. C.S. Kubrusly, P.C.M. Vieira and D.O. Pinto, A decomposition for a class of contractions, *Adv. Math. Sci. Appl.* **6** (1996) 523–530.
- 11. N. Levan, Canonical decompositions of completely nonunitary contractions, J. Math. Anal. Appl. 101 (1984) 514–526.
- 12. K. Okubo, The unitary part of paranormal operators, Hokkaido Math. J. 6 (1977) 273–275.
- 13. V. Pták and P. Vrbová, An abstract model for compressions, *Časopis Pěst. Mat.* **113** (1988) 252–266.
- 14. C.R. Putnam, Hyponormal contractions and strong power convergence, *Pacific J. Math.* **57** (1975) 531–538.
- 15. M. Shih, P. Tam and K.-K. Tan, Renorms and topological linear contractions on Hilbert spaces, Sci. China Ser. A 42 (1999) 246–254.
- 16. B. Sz.-Nagy and C. Foiaş, *Harmonic Analysis of Operators on Hilbert Space* (North-Holland, Amsterdam, 1970).

Catholic University of Rio de Janeiro, 22453-900 Rio de Janeiro, RJ, Brazil E-mail: carlos@ele.puc-rio.br Supported in part by CNPq

University of California at Los Angeles, Los Angeles, CA 90024-1594, USA E-mail: levan@ee.ucla.edu