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INVARIANT SUBSPACES
AND QUASIAFFINE TRANSFORMS
OF UNITARY OPERATORS

CARLOS S. KUBRUSLY

ABSTRACT. A classical conjecture on nontrivial invariant subspaces
for Hilbert-space contractions reads as follows. “A Ci.-contraction
has a nontrivial invariant subspace”. This turns out to be equivalent
to a second conjecture, namely, “if a contraction is a quasiaffine
transform of a unitary operator, then it has a nontrivial invariant
subspace”. Although these are still unsolved problems, it can be
proved that if a Cy.-contraction has no nontrivial invariant subspace,
then it is a quastaffine transform of its own unitary extension, which
is reductive and has an itnvariant dense and totally cyclic linear
manifold. This paper presents a brief review, based on [7] and [9],
on the equivalence between the above conjectures.

1. Preliminaries

Throughout the paper H and K stand for infinite-dimensional complex
separable Hilbert spaces, and B[H,K] stands for the Banach space
of all bounded linear transformations of H into K. Let N(X)CH
and R(X) C K denote the null space (i.e. the kernel) and range of
X € B[H, K], respectively. Set B[H| = B[H,H] for short. If T" lies in
B[H], then we say that T is an operator on H, and T* in B[H| denotes
the adjoint of T'. By a subspace of H we mean a closed linear manifold
of H, so that the closure R~ of a linear manifold R of H is a subspace
of H. A set § CH is invariant for an operator 7" on H if T'(S) C S.
A subspace M of H is nontrivial if {0} # M # H. M is a reducing
subspace for T' € B[H] if it is invariant for both 7" and 7™ (equivalently,
if both M and its orthogonal complement, M=, are invariant for T').
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An operator is reducible if it has a nontrivial reducing subspace, and
reductive if all its invariant subspaces are reducing.

An operator T on H is strongly stable (notation: T —= O) if the
power sequence {1 },>o converges strongly to the null operator (i.e.
if T"xz — 0 as n — oo for every x € H). By a contraction we mean an
operator T' such that ||T'|| < 1. As usual (cf. [11, p.72]), a contraction
T is of class Cy. if it is strongly stable, and of class C.¢ if its adjoint T
is strongly stable. Let C;. and C.; be the classes of all contractions for
which Tz -0 and T*"x - 0, respectively, for every nonzero z in H.

If T'is a contraction on H, then {71}, >¢ is a monotone bounded
sequence of self-adjoint operators (in fact a nonincreasing sequence of
nonnegative contractions) so that it converges strongly. Since T is a
contraction whenever 7T is, the sequence {T"T*"},>o also converges
strongly. Hence, associated with each contraction 7" on H, there exist
operators A and A, on H which are the strong limits of {T7*"T"},>0
and {T"T"*"},>0, respectively. That is,

T 5 A and T"T -2 A,.

A few well-known properties of these strong limits, that will be required
in the sequel, are displayed below (see e.g. [5] and [8, Ch.3]).

1 O<A<I and |A]|=1 whenever A # O,

3 NA) ={zeH: T'z —0 as n — oo},

(1)
(2) T*AT = A (ie. |A2Tx| = || A2 x| for every z € H),
(3)
(4)

NI -A) ={zeH: |[T"z| =|z| forall n>0}.

Clearly, replacing T with 7™ (and vice versa) we get similar properties
for A,. Property (3) says that T' € Cp. if and only if A = O (i.e. if and
only if N(A) =H), and T € C;. if and only if N'(A) = {0}. Therefore,

TeCyp <= A, =0,

TeCn <+ O and N(A,)={0},
TeCoy <= N(A)={0} and A, =0,
TeCh <<= N4 =N(A,)={0}.

A:
A:

Now consider a linear transformation Vj: R(A2) — R(A2) defined by

VoAsiz = ATz for every x € H. The definition of Vj makes sense
because A is self-adjoint (property (1)) so that A[za): R(A) — R(A) is
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injective. Observe that Vj acts isometrically on R(A%). This is ensured
by property (2). Indeed, ||[VpAzz|| = ||A2Tz|| = || A2 z|| for every x € H.
Extend Vj over R(A2)~ = R(A)~ and get the isometry

V:R(A)™ — R(A)".

Thus each contraction 7" on H also induces an isometry V on R(A)~
such that (see e.g. [5] and [8, Ch.3]).

(5) AT = VA® (ie. if A# O, then A? intertwines T to V).

Recall that an operator T € B[H] is intertwined to an operator
L € B[K] if there exists a nonzero transformation X € B[H, K] such
that XT = LX. In such a case we say that X intertwines T to
L. If R(X)” =K, then T is said to be densely intertwined to L.
A transformation X € B[H, K] is quasiinvertible if it is injective and
has a dense range (i.e. if N(X)={0} and R(X)” =K). T € B[H]
is a quasiaffine transform of L € B[K] if there exists a quasiinvertible
X € B[H, K] intertwining T to L.

Suppose T is a C;.-contraction so that N'(A) = {0} or, equivalently,
R(A)~ = H (reason: A is self-adjoint). In this case we can define a new
inner product on H, say ( ; ),: H X H — C, given by

(;y) = (Az;y)
for every x,y € ‘H, which induces the norm || ||, on H such that
1
0 <[[Azz| =zl <zl
for every nonzero vector z in ‘H. Consider the linear transformation
Xo: (H, ( ; )y) — (R(A2),( ; )) defined by Xoz = A2z for every x € H.

Let Hy be the completion of (H, ( ; ),) and extend Xy over the Hilbert
space H, to get the surjective isometry (i.e. the unitary operator)

XAC HA — H
In fact, R(X,) = R(4})~ = R(4)~ =H and | Xyz| = | At o] = |,
for every x € H. Note that T" acts isometrically on (H, ( ; ),). Actually,
by property (2),

1 1
ITzy = [[A2Tz| = [|Azz]| = ||,
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for every x € ‘H. Extend T over H, and get the isometry
Ty: Hy — Ha

such that Thx = Tx for each x € ‘H. The unitary operator X,: Hy — H
intertwines the isometry T): Hy — Hs to the isometry V:H — H, so
that Ty and V are unitarily equivalent. Indeed, property (5) leads to

X\ Thx = ATz = VAiz = VX,

for every x € 'H. Let U be the minimal unitary extension of the isometry
V. In light of the above unitary equivalence between the isometries T}
and V it is usual to refer to U as the unitary extension of T.

2. Introduction

Does every operator on a (separable) Hilbert space of dimension greater
than one have a nontrivial invariant subspace? This is perhaps the most
celebrated open question in operator theory. Its relevance is linked to
the Spectral Theorem (normal operators do have nontrivial invariant
subspaces) and also to the canonical Jordan form (every operator on
a finite-dimensional space has a nontrivial invariant subspace). This
makes the search for nontrivial invariant subspaces a natural, although
challenging and recalcitrant one. The collection of all invariant sub-
spaces for a given operator 7' is invariant under scalar multiplication.
Therefore, if T # O and 0 < o < ||T||7!, then T and T (which is a
contraction) share exactly the same lattice of invariant subspaces. Thus
the invariant subspace problem is reduced to the class of all contractions:
does every contraction have a nontrivial invariant subspace?

Isometries comprise a rather special class of Cy.-contractions. They
are those contractions 7" on ‘H for which ||Tz|| = ||z|| for every z € H.
Equivalently, those contractions T' for which A = I (see property (4),
or simply recall that T" is an isometry if and only if T*"*T™ = I for all
n>0). It is easy to show that every isometry has a nontrivial invariant
subspace. Actually, the next proposition says much more than this.

PrRoOPOSITION 1. If a contraction T on H has no nontrivial invariant
subspace, then it is either a Cog-contraction, a Cyy-contraction such that
|Aszx|| < ||z]| for every nonzero x in 'H, or a Cig-contraction such that
|Az|| < ||x|| for every nonzero x in H.

PROOF. See [8, Ch.5]. 0



Since a unitary operator is precisely a normal isometry, it follows that
the unitaries comprise a set of particularly well-known operators. There
are, however, some interesting open questions even for this special set
of Hilbert-space operators. Sample: is a unitary operator weakly stable
if and only if it is a bilateral shift or a direct summand of a bilateral
shift? (An operator T is weakly stable if the power sequence {1 },,>¢
converges weakly to the null operator).

Some invariant subspace problems for contractions are equivalent to
open questions on unitary operators. A class of such equivalent problems
was considered in [7] and [9]. The purpose of this paper is to present a
brief and unified survey on the results of [7] and [9].

3. Equivalent Invariant Subspace Problems

A classical open question in operator theory reads as follows.
(Qo) Does a contraction not in Cop have a nontrivial invariant subspace?

Observe that this question asks whether the conclusion in Proposition
1 can be sharpened to T' € Cyg. That is, whether a contraction without
a nontrivial invariant subspace is of class Cyg. In other words, whether
a contraction without a nontrivial invariant subspace is strongly stable
with a strongly stable adjoint. Recall that T" has a nontrivial invariant
subspace if and only if 7 has. Thus Proposition 1 leads to the following
reformulation of question Q.

(Q1) Does a Cy.-contraction have a nontrivial invariant subspace?

Another classical open question in operator theory is: does a quasiaffine
transform of a normal operator have a nontrivial invariant subspace?
(See e.g. [10, p.194].) A particular case of it, referring to contractions,
reads as follows.

(Q2) Does a contraction, which is a quasiaffine transform of a unitary
operator, have a nontrivial invariant subspace?

Since a unitary operator is a normal isometry, and an isometry is a
C1.-contraction, questions (Q1) and (Qz) can be generalized as follows.

(Q3) Does a contraction, which is intertwined to a Cy.-contraction, have
a nontrivial invariant subspace?

It was shown in [7] that these questions are all pairwise equivalent, and
hence the invariant subspace problems stated on them are reduced to
the open question (Q2) on unitary operators.



THEOREM 1. FEwvery Cq.-contraction has a nontrivial invariant subspace
if and only if every contraction which is a quasiaffine transform of a
unitary operator has a nontrivial invariant subspace.

4. Invariant Subspaces for Cj.-contractions

FEvery Cy.-contraction T is a quasiaffine transform of the isometry V,
which turns out to be its unitary extension when T has no nontrivial
imvariant subspace. To prove this, we first state a couple of propositions
whose proofs are based on standard results of single operator theory.

ProrosiTioN 2. If T is a quasiaffine transform of a hyponormal
operator L, then the spectrum of T includes the spectrum of L.

PROOF. See [3] — also see [4, p.94]. 0

Recall that an operator L is hyponormal if LL* < L*L. Clearly, every
isometry is a hyponormal contraction.

PRrROPOSITION 3. If an operator is densely intertwined to a nonunitary
1sometry, then it has a nontrivial invariant subspace.

PROOF. See e.g. [9] or [12]. 0
The next lemma is a deep result whose proof is not elementary at all.

LEMMA 1. A contraction whose spectrum includes the unit circle has
a nontrivial invariant subspace.

PROOF. See [2] — also see [1]. 0

For a Cy.-contraction, the assumption on its spectrum in Lemma 1 can
be replaced by the same assumption on the spectrum of its unitary
extension.

THEOREM 2. Let T be a Cy.-contraction. The spectrum of T includes
the spectrum of the isometry V. Moreover, if the spectrum of the unitary
extension of T 1is the unit circle, then T has a nontrivial invariant
subspace.

PROOF. Let T be a Cy.-contraction on H. Since N'(Az) = N (A) = {0}
and R(A2)” = R(A)” = H, it follows that Az is a quasiinvertible
operator which, according to (5), intertwines 7' to the isometry V.
Hence T is a quasiaffine transform of V. Thus, by Proposition 2,



the spectrum of the isometry V is included in the spectrum of T:
o(V) Co(T). From now on suppose T has no nontrivial invariant
subspace. In this case V is unitary (Proposition 3) so that V is the
unitary extension of 7. Moreover, Lemma 1 ensures that the unit circle
I' is not included in o (7). Therefore o(V') # I, so that the spectrum of
the unitary extension of 7' is not the whole unit circle. O

Recall: if a unitary operator U is nonreductive, then o(U) =T". This
shows that the next result, which is quite important in its own right
and whose original proof in [6] precedes Lemma 1, may be obtained as
an immediate corollary of Theorem 2.

COROLLARY 1. If the unitary extension of a Ci.-contraction T is
nonreductive, then T has a nontrivial invariant subspace.

Let Lat(7") denote the lattice of all invariant subspaces for an
arbitrary operator T on H. The orbit of z € ‘H under T is the set
{T"x},>0, whose (linear) span is the linear manifold span{T"z},>¢ =
{p(T')z: pis a polynomial} of H. Its closure, \/{T"x},>0, clearly lies in
Lat(T). These are the cyclic subspaces in Lat(T"): M € Lat(T) is cyclic
if M =\/{T"x},>0 for some z € H. If \/{T"z},>0 = H, then x is said
to be a cyclic vector for T'. We shall say that a linear manifold R of 'H
is totally cyclic for T if every nonzero vector in R is cyclic for T'. Recall
that 7" has no nontrivial invariant subspace (i.e. Lat(T) = {{0}, H}) if
and only if H is totally cyclic for T

PROPOSITION 4. Suppose T' € B[H] is densely intertwined to L € B[K].
Let X € B[H, K] be a transformation with dense range intertwining T
to L. If x € H 1s cyclic for T, then Xx € K is cyclic for L. If a linear
manifold R of H is totally cyclic for T, then X(R) C K is totally cyclic
for L.

PROOF. See [9]. 0

Corollary 1 points the investigation to Cj.-contractions that have a
reductive unitary extension, while Theorem 1 brings it back to question

(Q2).

THEOREM 3. If a Cy.-contraction has no nontrivial invariant subspace,
then it is a quasiaffine transform of its unitary extension, which is
reductive and has an invariant dense and totally cyclic linear manifold.

PROOF. Let T be a Cy.-contraction on H. Observe by property (5) that
R(A?) is invariant for V and that T is a quasiaffine transform of the
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isometry V (for N'(Az) = N(A) = {0} and R(42)” = R(A)" =H —
in particular, T is densely intertwined to V). From now on suppose T
has no nontrivial invariant subspace. Thus Proposition 3 ensures that V'
is unitary, and hence it is the unitary extension of T (which is reductive
according to Corollary 1). Moreover, H is totally cyclic for 7" so that
R(A%), which is dense in H, is totally cyclic for V' by Proposition 4. O
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