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INVARIANT SUBSPACES FOR A CLASS OF
C;.-CONTRACTIONS*

C.S. KUBRUSLY

ABSTRACT. Let U be the unitary extension of a Cj.-contraction T'. It is given a
simple new proof for the following theorem. If U is nonreductive, then T has a
nontrivial invariant subspace. Moreover, it is also shown that, if U is reductive
but does not have an invariant dense linear manifold made up entirely of cyclic
vectors, then T has a nontrivial invariant subspace.

1. Introduction

Throughout this paper ‘H and X will stand for infinite-dimensional complex separable
Hilbert spaces, and B[H,K| will stand for the Banach space of all bounded linear
transformations from H into K. Let N(X) C H and R(X) C K denote the null space
(i.e. the kernel) and range of X € B[H, K], respectively. Set B[H]| = B[H, H] for short. If
T € B[H] we shall say that T is an operator on H, and T* € B[H] will stand for the adjoint
of T'. By a subspace we mean a closed linear manifold, so that the closure R~ of a linear
manifold R is a subspace. A set S C H is invariant for an operator T’on H if T'(S) C S. A
subspace M of H is nontrivial if {0} # M # H. M is a reducing subspace for T' € B[H] if
it is invariant for both 7" and T* (equivalently, if both M and its orthogonal complement,
ML, are invariant for T'). An operator is reducible if it has a nontrivial reducing subspace,
and reductive if all its invariant subspaces are reducing.

A contraction is an operator T such that ||T|| < 1. If T is a contraction on a Hilbert
space H, then {T*"T™; n > 1} is a monotone bounded sequence of self-adjoint operators
(in fact a nonincreasing sequence of nonnegative contractions) so that it converges strongly.
Hence, associated with each contraction 7" on H, there exists an operator A on H which
is the strong limit of {T*"T™; n > 1}. That is, such that
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A few well-known properties of the strong limit A, that will be required in the sequel, are
displayed below (for these and further properties on the operator A see e.g. [6, 12, 13, 14]
and [11, Ch.3]).

O<ALI (i.e. A is a nonnegative contraction),

T*AT = A (ie. ||A2Tz|| = ||Azz|| for every z € H),

N(A) = {zeH: T"z — 0 as n — oo}.

~ o~
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As usual (cf. [15, p.72]), a contraction T is said to be of class Cy. if it is strongly stable
(i.e. if 7™ -2 O, which means that 7"z — 0 as n — oo for every € H), and of
class C.g if its adjoint T™ is strongly stable. A contraction T is said to be of class C;. if
T"x+4 0 as n — oo for every nonzero z € H, and of class C.q if T* is of class C;.. All
combinations are possible and this leads to classes Cyg, Co1, C19 and C11. Property (3) says
that T € Cp. if and only if A = O (i.e. if and only if N(A) =H), and T € C;. if and only
if N(A) = {0}. Now consider the linear transformation Vo: R(Az) — R(A2) defined by
Vodzz = AsTx for every x € H. The definiton of V) makes sense because A is self-adjoint
(cf. property (1)) so that Alga):R(A) — R(A) is injective. Vj acts isometrically on
R(Az). This is ensured by property (2): ||VoAzz|| = ||A2Tz|| = ||Azz]|| for every = € H.
Extend Vj to R(A2)~ = R(A)~ and get the isometry

V:R(A)™ — R(A)™.
Therefore each contraction 7" on H also induces an isometry V on R(A)~ such that
(4) AT = VA2 (i.e. if A+ O, then A2 intertwines T to V).

For further properties on the isometry V see e.g. [6, 14| and [11, Ch.3]. Recall that
an operator T € B[H]| is intertwined to an operator L € B[K] if there exists a nonzero
transformation X € B[H, K] such that XT' = LX. In such a case we say that X intertwines
T to L. If R(X)~ = K, then T is said to be densely intertwined to L.

Suppose T is a Cj.-contraction (i.e. N(A) = {0} or, equivalently, R(A)” = H -
reason: A is self-adjoint). In this case we can define a new inner product in H, say
(-;:H X H — C, given by

(z3yh = (Az;y)

for all z,y € H, which generates the norm || - ||, in H such that
1
0 < [lAzz]| = [|z[|la < |||

for every nonzero x in H. The norms || - || and || - ||4 are equivalent if and only if A is
invertible (i.e. if and only if R(A) = H). Recall that A is invertible if and only if T
is similar to an isometry (see e.g. [7, p.56]). Now consider the linear transformation
Xo: (H, {-;-34) — (R(A2), (-;-)) defined by Xoz = A%z for all z € H. Let H, be the



completion of (H, (:;-)4) and extend X, to the Hilbert space H, to get the surjective
isometry

XAZ HA — H

Indeed, R(X,) = R(A2)™ = R(A)~ = H and ||Xz|| = ||Azz|| = ||z||4 for every z € H.
Next note that T" acts isometrically on (H, (;-)4). Actually, by property (2),

1 1
| Tz||s = [|A2Tz|| = [[AZ 2|| = [|z]|a
for every x € 'H. Extend it to H, and get the isometry
Ta: Ha — Ha

such that Thx = Tz for every x € H. The unitary operator X,:H, — H intertwines
the isometry Ty: H, — H, to the isometry V:'H — H, so that T, and V are unitarily
equivalent. In fact, property (4) leads to

XaTyx = ATy = VAZx = VXazx

for every x € 'H. Let U be the minimal unitary extension of the isometry V. In light of the
above unitary equivalence between the isometries T, and V', U will be called the unitary
extension of T.

The purpose of this paper is twofold. First we present in Section 2 a new and (almost)
elementary proof for an important result which appeared in [8]: if T is a Cy.-contraction
whose unitary extension is nonreductive, then T has a nontrivial invariant subspace. This
in fact will come out as a corollary to the following theorem. If a Ci.-contraction has no
nontrivial invariant subspace, then the isometry V- becomes a unitary operator on H whose
spectrum is not the whole unit circle. The main tools used in the proof are well-known
results which are reprised below for the reader’s convenience.

LEMMA 1. If an operator T is a quasiaffine transform of a hyponormal operator L, then
the spectrum of T' contains the spectrum of L.

PROOF. See [3] - also see [4, p.94]. O

Recall that an operator L is hyponormal if LL* < L*L. Clearly every isometry is
hyponormal. X € B[H, K] is quasiinvertible if it is injective and has dense range (i.e.
if N(X) ={0} and R(X)~ =K). T € B[H] is a quasiaffine transform of L € B[K] if there
exists a quasiinvertible X € B[H, K] intertwining 7" to L.

LEMMA 2. A contraction whose spectrum contains the unit circle has a nontrivial invariant
subspace.

PROOF. See [2] - also see [1]. O
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By ‘(almost) elementary’ we mean that, except for the deep result in Lemma 2 (whose
proof is not elementary), all proofs in the present paper (as well as the proof of Lemma 1)
use only standard results of single operator theory.

Next we discuss in Section 3 the case where the unitary extension of a Cy.-contraction
is reductive: if a Cy.-contraction has no nontrivial invariant subspace, then its (reductive)
unitary extension has an invariant dense linear manifold made up entirely of cyclic vectors.
Of course, what really is behind all this is the conjecture that a contraction not in Cyg
has a nontrivial invariant subspace. (Recall: if a contraction has no nontrivial invariant
subspace, then it is either a Cyg, a Cp1 or a Cyg-contraction - see e.g. [10]).

2. Nonreductive

For a C;.-contraction, the assumption on its spectrum in Lemma 2 can be replaced by the
same assumption on the spectrum of its unitary extension.

PROPOSITION 1. If an operator is densely intertwined to a nonunitary isometry, then it
has a nontrivial invariant subspace.

PROOF. The von Neumann-Wold decomposition says that any isometry J in B[K] can
be decomposed as J = Sy & U, where S, is a unilateral shift and U is unitary. Thus an
isometry is nonunitary if and only if it has a unilateral shift as a direct summand. Recall
that the point spectrum of S% , which is contained in the point spectrum of J*, is the open
unit disc. If an operator T' in B[H] is such that XT = JX for some X in B[H, K] with
dense range (i.e. with A (X*) = {0}), then the point spectrum of 7% contains the point
spectrum of J* which in turn contains the open unit disc. Therefore T" has a large supply
of nontrivial invariant subspaces. O

THEOREM 1. Let T be a Cyi.-contraction. The spectrum of T contains the spectrum of
the isometry V. Moreover, if the spectrum of the unitary extension of T' is the unit circle,
then T has a nontrivial invariant subspace.

PROOF. Let T be a Cy.-contraction on a Hilbert space H. Since N'(A2) = N (A) = {0}
and R(A%)_ =R(A)~ =H, Az is a quasiinvertible operator which, according to (4),
intertwines 7" to the isometry V on H. Hence T is a quasiaffine transform of V. Thus, by
Lemma 1, the spectrum of the isometry V' is contained in the spectrum of T: (V') C o(T).
From now on suppose that 7" has no nontrivial invariant subspace. In this case V' is unitary
(according to Proposition 1) so that V is the unitary extension of 7. Moreover, Lemma 2
ensures that the unit circle I" is not contained in ¢(7"). Therefore o(V') # I', so that the
spectrum of the unitary extension of 7' is not the whole unit circle. O

Recall that every unitary operator U can be decomposed as U = S @& W, where S is a
bilateral shift and W is a reductive unitary operator (see e.g. [7, p.18]). Since a bilateral
shift is nonreductive, a unitary operator is nonreductive if and only if it has a bilateral shift
as a direct summand. Outcome: if a unitary U is nonreductive, then o(U) = I" (reason:



5

I'=0(S)Co(U)CI). The converse however does not hold: there exists a reductive
unitary operator whose spectrum is the whole unit circle. The classical example comprises
a unitary diagonal on (2. Set W = diag(vk; k > 0) in B[(2], where 7;, = 2™ for each
k and {ay} is a distinct enumeration of all rationals in [0,1). In such a case o(W) = I
(for {a } is dense in [0, 1]) but the unitary W is reductive (see e.g. [5, p.243]). This shows
that the assumptions in Theorem 1 and Corollary 1 below are not equivalent.

COROLLARY 1 [8]. If the unitary extension of a Cy.-contraction T is nonreductive, then
T has a nontrivial invariant subspace.

3. Reductive

For any operator T" on H let Lat(T) denote the lattice of all invariant subspaces for
T. The orbit of x € H under T is the set {T™xz; n > 0}, whose span is the linear
manifold span{T"x},>0 = {p(T)x: p is a polynomial}. Its closure, \/{T"z},>0, clearly
lies in Lat(T). These are the cyclic subspaces in Lat(T): M € Lat(T) is cyclic if
M =\{T"z},>0 for some z € H. If \/{T"z},>0="H, then x is said to be a cyclic
vector for T'. We shall say that a linear manifold R C H is totally cyclic for T if every
nonzero vector in R is cyclic for T'. Recall that T' has no nontrivial invariant subspace (i.e.
Lat(T) = {{0}, H}) if and only if H is totally cyclic for T.

PROPOSITION 2. Suppose T' € B[H] is densely intertwined to L € B[K]. Let X € B[H, K]
be a transformation with dense range intertwining T to L. If x € 'H is cyclic for T, then

Xz € K is cyclic for L. In particular, if a linear manifold R C 'H s totally cyclic for T,
then X (R) C K is totally cyclic for L.

PrROOF. Since XT = LX it follows that Xp(T) = p(L)X for every polynomial p.
Therefore, for an arbitrary nonzero x in H, X (span{T"x},,>0) = span{L"Xz},>¢. Thus
X(V{T"z}n>0) C V{L"Xz},>0, where the inclusion is ensured by the continuity of X
(recall: if X:H — K is continuous, then X (S7) C X(S)~ for every set S C H). Now
suppose z is cyclic for T" so that \/{T"z},,>0 = H. Hence X(H) C \/{L"Xz},>0 and Xz
is cyclic for L because X has dense range. O

THEOREM 2. Let T be a Cy.-contraction. If T has no nontrivial invariant subspace, then

T is a quasiaffine transform of its unitary extension V. Moreover, V is reductive and
1 . . . . . .

R(A2) is an invariant dense totally cyclic linear manifold for V.

PROOF. Let T be a Cj.-contraction on a Hilbert space H. According to property (4),
R(A?) is invariant for V, and T is a quasiaffine transform of the isometry V on H (for
N(A42) = N(A) = {0} and R(A2)~ = R(A)™ = H - in particular, T is densely intertwined
to V). From now on suppose that 7' has no nontrivial invariant subspace. Thus
Proposition 1 ensures that V' is unitary, and hence it is the unitary extension of 7' (which
is reductive according to Corollary 1). Moreover, H is totally cyclic for T" so that R(A%),
which is dense in H, is totally cyclic for V' by Proposition 2. a



COROLLARY 2. If the unitary extension of a Cy.-contraction T does not have a totally
cyclic dense linear manifold, then T' has a nontrivial invariant subspace.

It is worth noticing that the converse of Theorem 2 does not hold. Indeed, it has been
exhibited in [9] a subnormal Cjp-contraction T : H — H such that H, which is dense in
‘Ha, is totally cyclic for the isometry T4 : Hy — Ha. Moreover, T, also was shown to be
unitarily equivalent to a reductive unitary operator. Therefore the isometry V : H — H
(which is unitarily equivalent to 7)) becomes a reductive unitary and X,(H) = R(A?),
which is dense in H, is totally cyclic for V' (the unitary extension of T').

4. Coda

The above example can also be applied to settle another related problem. In order to pose
it properly, we first introduce a couple of well-known results.

CLAM 1.  Suppose T € B[H] is densely intertwined to a reducible operator L € B[K].
Let M C K be an arbitrary nontrivial reducing subspace for L, and let X € B[H,K] be
a transformation with dense range intertwining T to L. T has no nontrivial invariant
subspace only if the linear manifold R(X), which is dense in K = M & M=, does not
intercept both M\{0} and M*\{0}.

PROOF. See [11, pp.62,63]. O

This (i.e. the necessary condition R(X) N M = R(X) N M+ = {0}) cannot happen if M
or M+ is finite-dimensional.

CLAIM 2. Let R be a dense linear manifold of IC, and let M be a nontrivial subspace of
K. If M or M= is finite-dimensional, then R N M=+ # {0} or RN M # {0}.

PROOF. See [11, pp.63-65]. O

It may be tempting to think that Claim 2 might hold if M and M were both infinte-
dimensional. In such a case Claim 1 would provide a positive answer to a classical open
question, namely, does every operator which is densely intertwined to a reducible operator
have a nontrivial invariant subspace? In particular, does every quasiaffine transform of
a normal operator have a nontrivial invariant subspace? (See Theorem 2). However, by
using the example borrowed from [9], the temptation quickly fades away: Claim 2 does
not hold without the finite-dimensional assumption. Indeed, the above example shows
that there exists a dense linear manifold R C X, which is invariant and totally cyclic
for a unitary operator U on K. Take any nontrivial reducing subspace M for U (whose
existence is ensured by the spectral theorem). Thus K = M & M+ and both M and M=
are nontrivial invariant subspaces for U. Since R is totally cyclic for U, it follows that
RN M ={0}. In fact, if there existed x # 0 in R N M, then \/{U"z},>0 C M # K so
that x € R would not be cyclic for U, and hence R would not be totally cyclic for U.
Similarly, R N M+ = {0}.
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