ON UNIFORM STABILITY*

P.C.M.VIEIRA,
H. MALEBRANCHE
AND
C.S. KUBRUSLY

ABSTRACT. Let T be an operator on a Hilbert space \mathcal{H} . If the sequence $\{\sum_{n=0}^{m} (\lambda T)^n; m \geq 0\}$ converges weakly for every λ in the unit circle, then T is uniformly stable. This leads to an elementary proof that uniform stability is equivalent to $\sum_{n=0}^{\infty} |\langle T^n x; y \rangle| < \infty$ for all $x, y \in \mathcal{H}$.

1. Introduction

Throughout the paper \mathcal{H} will stand for a complex Hilbert space. By an operator on \mathcal{H} we mean a bounded linear transformation from \mathcal{H} into itself. Let $\mathcal{B}[\mathcal{H}]$ be the Banach algebra of all operators on \mathcal{H} . r(T), $\sigma(T)$ and $\rho(T)$ will denote spectral radius, spectrum and resolvent set of $T \in \mathcal{B}[\mathcal{H}]$, respectively. As usual, the notation $T_n \stackrel{u}{\longrightarrow} T$, $T_n \stackrel{s}{\longrightarrow} T$ and $T_n \stackrel{w}{\longrightarrow} T$ will mean that the sequence of operators $\{T_n \in \mathcal{B}[\mathcal{H}]; n \geq 0\}$ converges to $T \in \mathcal{B}[\mathcal{H}]$ uniformly, strongly and weakly, respectively. By stability we mean power sequence convergence to the null operator. Thus an operator $T \in \mathcal{B}[\mathcal{H}]$ is said to be uniformly, strongly or weakly stable if $T^n \stackrel{u}{\longrightarrow} O$, $T^n \stackrel{s}{\longrightarrow} O$ or $T^n \stackrel{w}{\longrightarrow} O$, respectively. The definitions of stability, as posed above, in fact refer to asymptotic stability for discrete linear systems.

The purpose of this paper is to present a new equivalent condition for uniform stability (cf. Lemma 1 and Corollary 1). Moreover, it will be shown that such an equivalent condition leads to an elementary proof for another one which has recently been established in [3] (cf. Corollary 2). Although the present paper is set up on a complex Hilbert space \mathcal{H} , the very same results do hold for a complex Banach space \mathcal{X} as well (just replace the inner product $\langle x;y\rangle$ $x,y\in\mathcal{H}$ by the duality pair [x;y] $x\in\mathcal{X}$ and $y\in\mathcal{X}^*$, the dual space of \mathcal{X}).

^{*}Supported in part by CNPq (Brazilian National Research Council). Key words: *Uniform stability, Hilbert-space operators, discrete linear systems*. AMS Subject Classification: Primary 47A10; Secondary 93D20.

2. Preliminaries

Uniform stability has been much investigated in the past, say, two decades. In fact there exists in current literature a huge collection of equivalent conditions for uniform stability. We shall give below a brief survey on uniform stability involving just a few of such equivalent conditions. They comprise a set of well-known results (see e.g. [1], [2] and the references therein) with a rather short and elementary proof which, as given below, will motivate the next result.

THEOREM 1. Let $T \in \mathcal{B}[\mathcal{H}]$. The following assertions are equivalent.

- (a) $T^n \xrightarrow{u} O$ (i.e. $||T^n|| \to 0 \text{ as } n \to \infty$).
- (b) r(T) < 1.
- (c) $||T^n|| \le \beta \alpha^n$ for every $n \ge 0$, for some $\beta \ge 1$ and $\alpha \in (0,1)$.
- (d) $\sum_{n=0}^{\infty} ||T^n||^p < \infty \quad \text{for an arbitrary } p > 0.$
- (e) $\sum_{n=0}^{\infty} ||T^n x||^p < \infty \quad \text{for all } x \in \mathcal{H}, \quad \text{for an arbitrary } p > 0.$

PROOF. Since $r(T)^n = r(T^n) \le ||T^n||$ for every integer $n \ge 0$, it follows that (a) \Rightarrow (b). The Gelfand-Beurling formula for the spectral radius $(r(T) = \lim_n ||T^n||^{1/n})$ ensures that, if (b) holds, then for any $\alpha \in (r(T), 1)$ there exists an integer $n_{\alpha} \ge 1$ such that $||T^n|| \le \alpha^n$ for every $n \ge n_{\alpha}$. Thus (b) \Rightarrow (c) with $\beta = \max_{0 \le n \le n_{\alpha}} ||T^n|| \alpha^{-n_{\alpha}}$. It is trivially verified that (c) \Rightarrow (d) \Rightarrow (e) Finally note that $\sup_n ||T^nx|| < \infty$ for all $x \in \mathcal{H}$ whenever (e) holds true, and hence $\sup_n ||T^n|| < \infty$ by the Banach-Steinhaus Theorem. Also note that, for $m \ge 1$ and p > 0 arbitrary,

$$||m^{1/p}T^mx||^p = \sum_{n=0}^{m-1} ||T^{m-n}T^nx||^p \le (\sup_n ||T^n||)^p \sum_{n=0}^{\infty} ||T^nx||^p.$$

Thus (e) implies that $\sup_m ||m^{1/p}T^mx|| < \infty$ for all $x \in \mathcal{H}$. Since $m^{1/p}T^m$ lies in $\mathcal{B}[\mathcal{H}]$ for each integer m, the Banach-Steinhaus Theorem ensures that $\sup_m ||m^{1/p}T^m|| < \infty$. Hence (e) \Rightarrow (a).

Another equivalent condition for uniform stability, which apparently might be thought of as a weak version of (e), has been recently established in [3]. It reads as follows.

(f)
$$\sum_{n=0}^{\infty} |\langle T^n x; y \rangle|^p < \infty \quad \text{ for all } x, y \in \mathcal{H}, \quad \text{ for an arbitrary } p \ge 1.$$

It has not been proved yet whether it holds for an arbitrary p > 0. That (e) \Rightarrow (f) is trivial. On the other hand, the proof of (f) \Rightarrow (a) does not mirror the proof of (e) \Rightarrow (a) since the inequality $||T^{m-n}T^nx|| \leq ||T^{m-n}|| ||T^nx||$, which holds for norms, has no counterpart for absolute value of inner products. We shall not present a detailed proof of (f) \Rightarrow (a). It is somewhat lengthy (for such a detailed proof the reader is referred to [3]). However the

clever idea behind it, as proposed in [3], goes as follows. Suppose (f) holds true and, for each $y \in \mathcal{H}$, consider the map $W_y : \mathcal{H} \to \ell^p$ defined as $W_y(x) = (\langle T^0x; y \rangle, \langle T^1x; y \rangle, \langle T^2x; y \rangle, \cdots)$ for all $x \in \mathcal{H}$, which clearly is linear. By using the Banach-Steinhaus Theorem it can be shown that it is bounded also. A second application of the Banach-Steinhaus Theorem ensures that

$$||W_y(x)||^p = \sum_{n=0}^{\infty} |\langle T^n x; y \rangle|^p \le \omega^p ||x||^p ||y||^p$$

for all $x, y \in \mathcal{H}$, for some real constant $\omega > 1$. From now on the proof is split into two parts. One considering the case of p = 1 and the other the case of p > 1. Here we follow the case of p > 1 only, since we shall give below a simpler proof for the case of p = 1. Thus, by using the above inequality (with a little help from Hölder inequality) and noticing that (f) implies $r(T) \leq 1$ (for $T^n \xrightarrow{w} O \Rightarrow r(T) \leq 1$), it follows that

$$||(\lambda I - T)^{-1}|| = \sup_{||x|| = ||y|| = 1} |\langle (\lambda I - T)^{-1} x; y \rangle|$$

$$= \sup_{||x|| = ||y|| = 1} |\langle \lim_{m \to \infty} \sum_{n=0}^{m} \lambda^{-(n+1)} T^n x; y \rangle|$$

$$\leq \omega \left(|\lambda|^{p/(p-1)} - 1 \right)^{-(p-1)/p}$$

whenever $|\lambda| > 1$. Now, recalling that the distance of a point λ in the resolvent set to the spectrum $\sigma(T)$, $d(\lambda, \sigma(T))$, is an upper bound for $||(\lambda I - T)^{-1}||^{-1}$ (i.e. $||(\lambda I - T)^{-1}||^{-1} \le d(\lambda, \sigma(T))$), it then follows that

$$\omega^{-1}(|\lambda|^{p/(p-1)}-1)^{(p-1)/p} \le d(\lambda, \sigma(T))$$

whenever $|\lambda| > 1$. Suppose $r(T) \neq 0$ (otherwise (b) holds tautologically). Since $\sigma(T)$ is closed, there exists $\mu \in \sigma(T)$ such that $|\mu| = r(T)$. Take $\gamma > 1$ arbitrary and set $\lambda = \gamma \mu / r(T)$. Note that $0 < r(T) \le 1 < \gamma = |\lambda|$, and

$$d(\lambda, \sigma(T)) = \gamma - r(T).$$

This leads to an upper bound for the spectral radius: for every real number $\gamma > 1$,

$$r(T) \le \gamma - \omega^{-1} (\gamma^{p/(p-1)} - 1)^{(p-1)/p}.$$

Thus, by setting $\gamma = (1 - \omega^{-p})^{-(p-1)/p}$ (which is greater than one),

$$r(T) \le (1 - \omega^{-p})^{1/p} < 1.$$

Therefore (f) \Rightarrow (b). Equivalently (cf. Theorem 1), (f) \Rightarrow (a).

3. Main Results

In this section we shall give a new necessary and sufficient condition for uniform stability. This will lead to a rather elementary proof for the case of p = 1 that has been skipped in the previous section's discussion. Throughout the remaining text Γ will denote the unit circle in the complex plane centered at the origin.

LEMMA 1. Let $T \in \mathcal{B}[\mathcal{H}]$. If $\{\sum_{n=0}^{m} (\lambda T)^n; m \geq 0\}$ converges weakly for every $\lambda \in \Gamma$, then r(T) < 1.

PROOF. First recall that, for each complex number $\lambda \neq 0$ and any operator $T \in \mathcal{B}[\mathcal{H}]$,

$$(\lambda I - T) \sum_{n=0}^{m} \lambda^{-(n+1)} T^n = \sum_{n=0}^{m} \lambda^{-(n+1)} T^n (\lambda I - T) = I - (\lambda^{-1} T)^{m+1}$$

for every integer $m \geq 0$. Suppose $\{\sum_{n=0}^{m} (\lambda T)^n; m \geq 0\}$ converges weakly, which means that there exists $L \in \mathcal{B}[\mathcal{H}]$ such that $\sum_{n=0}^{m} (\lambda T)^n \xrightarrow{w} L$ as $m \to \infty$. Thus $(\lambda^{-1}I - T)\lambda L = \lambda L(\lambda^{-1}I - T) = I$ (for $(\lambda T)^n \xrightarrow{w} O$) so that $(\lambda^{-1}I - T)^{-1} = \lambda L$, which lies in $\mathcal{B}[\mathcal{H}]$. Hence $\lambda^{-1} \in \rho(T)$. Therefore, if $\{\sum_{n=0}^{m} (\lambda T)^n; m \geq 0\}$ converges weakly for every $\lambda \in \Gamma$, then $\Gamma \subset \rho(T)$ and $\Gamma^n \xrightarrow{w} O$ (for $(\lambda T)^n \xrightarrow{w} O$ for every $\lambda \in \Gamma$). However $T^n \xrightarrow{w} O \Rightarrow r(T) \leq 1$ (reason: weak stability implies power boundedness which in turn implies $r(T) \leq 1$). Thus r(T) < 1 because $\Gamma \subset \rho(T)$.

COROLLARY 1. Let $T \in \mathcal{B}[\mathcal{H}]$. Each of the following assertions is equivalent to uniform stability.

- (g) $\left\{\sum_{n=0}^{m} (\lambda T)^n; \ m \geq 0\right\}$ converges uniformly for an arbitrary $\lambda \in \Gamma$.
- (h) $\{\sum_{n=0}^{m} (\lambda T)^n; m \ge 0\}$ converges strongly for every $\lambda \in \Gamma$.
- (i) $\{\sum_{n=0}^{m} (\lambda T)^n; m \ge 0\}$ converges weakly for every $\lambda \in \Gamma$.

PROOF. Note that (h) \Rightarrow (i), and (i) \Rightarrow (b) by the previous lemma. On the other hand, $\Gamma \subset \rho(T)$ whenever (b) holds. Equivalently, (b) ensures the existence of $(\lambda I - T)^{-1} \in \mathcal{B}[\mathcal{H}]$ for every $\lambda \in \Gamma$. Thus

$$\sum_{n=0}^{m} (\lambda T)^n = \lambda^{-1} \sum_{n=0}^{m} (\lambda^{-1})^{-(n+1)} T^n = \lambda^{-1} (\lambda^{-1} I - T)^{-1} (I - (\lambda T)^{m+1})$$

for every $\lambda \in \Gamma$. Since (b) \Rightarrow (a), it follows that $\sum_{n=0}^{m} (\lambda T)^n \xrightarrow{u} \lambda^{-1} (\lambda^{-1}I - T)^{-1} = (I - \lambda T)^{-1}$ as $m \to \infty$ for every $\lambda \in \Gamma$. Conclusion: (b) implies

(g') $\{\sum_{n=0}^{m} (\lambda T)^n; m \ge 0\}$ converges uniformly for every $\lambda \in \Gamma$,

which trivially leads to (h) and (g). Finally note that (g) \Rightarrow (a). Equivalently (cf. Theorem 1), (g) \Rightarrow (b).

COROLLARY 2. Let $T \in \mathcal{B}[\mathcal{H}]$. T is uniformly stable if and only if

(f')
$$\sum_{n=0}^{\infty} |\langle T^n x; y \rangle| < \infty \quad \text{for all } x, y \in \mathcal{H}.$$

PROOF. Take $\lambda \in \Gamma$ and $x, y \in \mathcal{H}$ arbitrary. If assertion (f') holds true, then the real sequence $\{\sum_{n=0}^{m} |\langle (\lambda T)^n x; y \rangle|; m \geq 0\}$ converges in \mathbb{R} , so that the complex sequence $\{\sum_{n=0}^{m} \langle (\lambda T)^n x; y \rangle; m \geq 0\}$ converges in \mathbb{C} (recall: absolute convergence implies convergence for series in a Banach space). Therefore, since $\langle \sum_{n=0}^{m} (\lambda T)^n x; y \rangle = \sum_{n=0}^{m} \langle (\lambda T)^n x; y \rangle$, it follows that $\{\sum_{n=0}^{m} (\lambda T)^n; m \geq 0\}$ converges weakly for every $\lambda \in \Gamma$. Conclusion: (f') implies (i). Note that assertion (e), with p=1, trivially implies (f'). \square

4. Two Counterexamples

We close the paper with two remarks on the equivalent assertions of Corollary 1.

Remark 1. A weak version of assertion (h), namely

(j)
$$\{\sum_{n=0}^{m} (\lambda T)^n; m \geq 0\}$$
 converges strongly for some $\lambda \in \Gamma$,

does not imply uniform stability (and hence (j) does not imply (g)). For instance, the operator $T = -\text{diag}(k/(k+1); k \ge 1)$ in $\mathcal{B}[\ell^2]$ is strongly stable (i.e. $T^n \stackrel{s}{\longrightarrow} O$) and $1 \in \rho(T)$. Thus

$$\sum_{n=0}^{m} T^{n} = (I - T)^{-1} (I - T^{m+1}) \xrightarrow{s} (I - T)^{-1} \in \mathcal{B}[\ell^{2}].$$

However T is not uniformly stable. Indeed r(T) = 1 so that $(\lambda T)^n \xrightarrow{u} O$, and hence $\{\sum_{n=0}^m (\lambda T)^n; m \geq 0\}$ does not converges uniformly, for every $\lambda \in \Gamma$.

Remark 2. Since strong convergence implies weak convergence, the above counterexample also ensures that the weak version of (i), viz.

(k)
$$\left\{\sum_{n=0}^{m} (\lambda T)^n; \ m \ge 0\right\}$$
 converges weakly for some $\lambda \in \Gamma$,

does not imply uniform stability. In fact, (k) does not even imply (j). For instance, let S be a bilateral shift on \mathcal{H} , and let S_1 be a direct summand of it for which $1 \in \rho(S_1)$ (so that there exists $(I - S_1)^{-1}$ continuous). Note that S_1 is weakly stable (i.e. $S_1^n \xrightarrow{w} O$ because $S^n \xrightarrow{w} O$). Thus

$$\sum_{n=0}^{m} S_1^n = (I - S_1)^{-1} (I - S_1^{m+1}) \xrightarrow{w} (I - S_1)^{-1}.$$

However, since S_1 is unitary, $(\lambda S_1)^n \xrightarrow{s} O$ for every $\lambda \in \Gamma$ (indeed $||(\lambda S_1)^n x|| = ||x||$ for every $\lambda \in \Gamma$, every integer $n \geq 0$, and all $x \in \mathcal{H}$). Therefore $\{\sum_{n=0}^m (\lambda S_1)^n; m \geq 0\}$ does not converge strongly for every $\lambda \in \Gamma$.

References

- 1. C.S. Kubrusly, Mean square stability for discrete bounded linear systems in Hilbert space, SIAM J. Control Optim. 23 (1985) 19–29.
- 2. C.S. Kubrusly, Uniform stability for time-varying infinite-dimensional discrete linear systems. IMA J. Math. Control Inform. 5 (1988) 269–283; Erratum 7 (1990) 291–292.
- 3. G. Weiss, Weakly ℓ^p -stable linear operators are power stable, Int. J. Systems Sci. **20** (1989) 2323–2328.

P.C.M. VIEIRA
NATL. LAB. FOR SCIENTIFIC
COMPUTATION - LNCC
22290-160 RIO DE JANEIRO
BRAZIL.

H. MALEBRANCHE
NATL. LAB. FOR SCIENTIFIC
COMPUTATION - LNCC
22290-160 RIO DE JANEIRO
BRAZIL;
AND
RIO DE JANEIRO STATE
UNIVERSITY-UERJ.

C.S. Kubrusly
Catholic University of
Rio de Janeiro-PUC/RJ;
AND
NATL. LAB. FOR SCIENTIFIC
COMPUTATION - LNCC
22290-160 RIO DE JANEIRO
BRAZIL.