Advances in Mathematical Sciences and Applications 6 (1996) 523-530

A DECOMPOSITION FOR A CLASS OF CONTRACTIONS*

CARLOS S. KUBRUSLY, PAULO CESAR M. VIEIRA AND DENISE O. PINTO

Abstract. A Hilbert-space contraction 7T is the direct sum of a strongly stable
contraction and an isometry whenever the strong limit of {T*"1™; n > 1} is
a projection. This is the case for any compact, quasinormal or cohyponormal
contraction. Such a decomposition leads to a simple proof that a contraction
with no proper invariant subspace is of class Cyg U Co1 U Cqp.

1. INTRODUCTION

Let T be an operator on a Hilbert space ‘H (i.e. a bounded linear transformation of
a separable complex Hilbert space H into itself). By a subspace of H we mean a closed
linear manifold of it. N (T") will denote the null subspace (i.e. the kernel) of T'. A strongly
stable operator T' is one whose power sequence {T™; n > 1} converges strongly to O
(ie. T"—50). Recall that a strongly stable operator is not necessarily a contraction
(indeed not even necessarily similar to a contraction - cf. [4]). Let Cyo be the class of
all strongly stable contractions whose adjoint also is strongly stable. The class of all
strongly stable contractions T" for which the adjoint T is such that T""z /4 0 for every
nonzero x € H is denoted by Cpi. Similarly Cio denotes the class of all contractions
T whose adjoint is strongly stable and T"z - 0 for every nonzero z € H. If T is a
contraction (i.e. ||T|| < 1) then {T*™T™; n > 1} is a nonincreasing nonnegative sequence
of contractions, thus strongly convergent. Let the operator A on H be its strong limit.
Since T™* is a contraction whenever T is, let the operator A, on H be the strong limit of
{T™T*™; n>1}.

Such strong limits A and A, have played an important role in the theory of completely
nonunitary contractions (i.e. those contractions that have no unitary direct summand;
equivalently, those contraction T' for which N'(I — A) NN (I — A,) = {0} — see e.g. [6]).
For instance, these have been investigated by Durszt [3] and Ptak and Vrbova [7] towards
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a generalization of Rota’s model technique [10] (which in fact is applied to strongly stable
contractions) to completely nonunitary contractions. The purpose of the present paper is
to push forward such an investigation on the operators A and A,. In particular, we shall
establish a decomposition for contractions T" for which A and A, are projections. First we
recall the following few well-known properties that will be required in the sequel (cf. [3],

[6] and [7]).

1) O<ALI

2) ||Tmz|| — ||AZz|| as n — oo for all z € H (ie. T*"T" A > 0).
3) [|AzTmz|| = ||Azz|| for all z € H and every n > 1 (i.e. T*"AT™ = A > O).
4
5

6

|AT™z|| — ||AZz|| as n — oo for all z € H (since (I — A)T"--0).
NA)={zeH: Trz— 0}

)
)
)
)
)
) NU—A)={zeH: |[T"z|| =]z Yn=>1}.

(
(
(
(
(
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Properties (5) and (6) ensure that the subspaces N(A) and N (I — A) are invariant
under 7'. Also note from (5) that a contraction T is strongly stable if and only if A = O, so
that a contraction T is of class Cyg if and only if A = A, = O. Similarly, the classes Cp; and
C1o comprise those contractions T for which either A = O and N (A.) = {0}, or A, = O
and N (A) = {0}, respectively. According to (1) A is idempotent (i.e. A = A?) if and
only if it is a projection (i.e. an orthogonal projection). Moreover it is readly verified from
(2) and (3) that ||A|| = 1 whenever A # O, which is a property of projections. However
A may not be idempotent for an arbitrary contraction T (e.g. for H = ¢ and T =
shift(kZ(k +2)2/(k+1); k > 1) it follows that A = diag(k/k +1; k > 1), so that
N (A — A?) may even be null ). Indeed A will be a projection if and only if it commutes
with 7. Such an equivalence is in fact an immediate corollary to the following lemma.

LEMMA 1.  N(A — A?2) is the largest subspace of H that is contained in N(AT — TA)
and is invariant for T.

Proor. Take an arbitrary contraction T'. First note that
(AT || — ||Az|])* < [|AT"2 — T" Ax|]® < ||AT"||* — || Ax||?
for all x € H and every n > 1 (the second inequality comes from (3)). Next recall that
14 — 42)%a]|? = [| 4} a] 2 — || Aa
and, by using property (3) again, for every n > 1
| Az]| < ||AT"|| < ||A3T"a|| = ||A%a]],

for all z € H. Since N(A — A2) = N'((A— A2)3) the above three results and property (4)
ensure that



NA-AY={zecH: |[A%z|=|Az||}={zecH: |[AT x| =|Az| ¥n>1}
—{zeH: AT'z=T"Az Yn>1} C N(AT —TA);

and also that N (A — A?) is invariant for T. Now let M be a subspace of H, contained in
N (AT —TA) and invariant for T'. Take x € M arbitrary. It is readily verified by induction
that TnAx = AT™z for every n > 1. Thus z € N (A — A?). Therefore M C N (A — A?).
O

The next lemma exhibts an invariant subspace decomposition for the invariant sub-
space N(A — A?). This will be our starting point for establishing a decomposition for
contractions with N'(A — A%) = H.

LEMMA 2. N(A—-A?)=NA) NI - A).

PROOF. Since N(A)UN(I — A) C N(A — A?), and since N(A) LN (I — A) (for A is
self-adjoint), it follows that AN(A) @ N(I — A) € N (A — A?). On the other hand, since
N (A — A?) is invariant under the self-adjoint adjoint operator A it reduces A. Thus
A=Ay ® Ay, with Ag = A|rr(a—a2) and Ay = A|pra—a2)r. Note that Ag is a projection
on N(A — A?%) (for O < Ay and Ay = A3). Hence N (A — A2%) = N(Ag) ® N(Ag)* =
N(Ao) ® N(I — Ap). However N(Ag) C N(A) and N(I — Ag) € N(I — A), so that
N(Ag) BN (I — Ag) CN(A) ®N (I — A). Therefore N(A — A?) CN(A) e N(I - A). O

2. A DECOMPOSITION FOR CONTRACTIONS WITH A = A2

Recall that, for an arbitrary contraction 7', the Nagy-Foias-Langer decomposition (cf.
[12, p.9,52]) says that T'= C @ U where C is a completely nonunitary contraction and U
is unitary. A particular case of it is obtained when T is an isometry leading to the von
Neumann-Wold decomposition for isometries, which says that 7" = S, @& U where S, is
a unilateral shift. We shall now focus on an intermediate situation. A contraction is an
isometry if and only if A = I (cf. property (3)). Let us relax this a little by asking only
that A (and/or A,) be a projection.

Let T be a contraction and let A and A, be such that T**T"—5A and T"T*"—5 A,,.
The following implications are trivially verified. (i) If 7= G&S;®U, where G is a strongly
stable contraction, Sy is a unilateral shift and U is unitary, then A = A%2. Moreover, (ii) if
G = B ® S_, where B is a Cyp contraction and S_ is a backward unilateral shift (i.e. the
adjoint of a unilateral shift), then A = A? and A, = A2. Furthermore, (iii) if T = B® U
then A = A,. The next theorem and the following corollary establish the converses (it is
of course understood that any of the direct summands in the decompositions below may
be missing).

THEOREM. Let T be a contraction on H. If A = A? then

T=GaV,
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where G := T|pr(a) is a strongly stable contraction and V' := T|nr(;—a) is an isometry.
Moreover, the von Neumann-Wold decomposition for the isometry V,

V=5.aU,

is such that the unilateral shift Sy is equal to T|nr(r—aynnr(a,) and the unitary operator U
is equal to T|nr(r—ayan(1—A,)- Furthermore, if A = A? and A, = A? then

G=BaS._,

where B := T'|xaynn(a,) 95 a Coo contraction and S_ = T|zraynn(1—4,) @5 a backward
unilateral shift.

PROOF. Suppose H # {0} to avoid trivialities. If A = A% then Lemma 2 ensures that
H=N(A)®& N — A). Since N(A) and N(I — A) are clearly invariant under T (cf. (5)
and (6)) they reduce T'. Thus we get the (orthogonal direct sum) decomposition

T'=GaoV

on H = N(A) ® N(I — A), where G := T|ya) is a strongly stable contraction and
V' := T|pr(1—a) is an isometry, according to (5) and (6), respectively. However, by Nagy-
Foias-Langer decomposition for contractions (cf. [12, p.9,52]),

V:S+@U

on N(I — A) = K+ @ K, where Sy := V|1 is a completely nonunitary isometry (which
means a pure isometry, or equivalently a unilateral shift - see e.g. [2, p.15]) and U := V¢
is unitary; with

K:i={zeNIT-A): |[[V'z|[=[[V7"z||=]lz]| Vn=>1}
={zeNU-A): [[V7z||=]lz|]| Vn=1}
={zeNUI-A4): [[T™z]=]z|[ Vn=>1}
=N{I-A)NNI-A,)

(since T=G®V on H=N(A) NI - A) - cf. (6)). Thus V|x = T|n—a)nn—a.)-
Now note that K+ = N (I — A) © K C N(A,) C N(A) ® K+ (since T* = G* @ S5 @ U*
on H =N(4)® K+ &K and S50 - of. (5)). Hence N(I — A)NN(A,) CN(I—A)N
N(A) @ K+) = Kt CN(I - A)NN(A,). Therefore

Kt =N(I—-A)NN(A)

and hence V1 = T|n(r—aynn(a.). Next suppose N(A) # {0} (otherwise the remaing
results are trivial) and let A, on N(A) be the strong limit of {G"G*"™; n > 1} so that
Ay, =A oO0@Tand (I -A4,)=T—-A)DPI®0 onH =N(A) ®K+®K. Thus
N(A) =N(A) @ Kt CN(A) @ Kt so that

N(AL) = N(A.) NN (A),



and N(I — A,) =N({I - A,) @K CN(A) @ K so that
N(I = ALY = N(I — A,) NN (A),.

If (in addition to A = A2) A, = A2 then A, = A2, Hence N'(A) = N(A) @ N (I — A)
by Lemma 2. Since N(A}) and N (I — A,) are invariant under G* (cf. (5) and (6)) they
are reducing subspaces for G*, and so are they for G. Thus we get the decomposition

G=B®S_

on N(A) = ./\/'(Aik) EBN(I — A;), where B := G|./\/'(A;) = T|N(A*)0N(A) and S_ =
Glnr—ar)y = T|nr(r—a,)nn(4), so that B is a Cyo contraction and S_ is a strongly stable
coisometry (cf. (5) and (6) once again). Thus S_ is a completely nonunitary coisometry,
and hence its adjoint is a completely nonunitary isometry (i.e. a unilateral shift). O

PROPOSITION. If A= A, then A= AZ2.

Proor. If A = A, then (cf. property (3)) A =T*""AT" =T*"AT" =T*"T"AT*"T"
for every n > 1. Thus A = A3 (since T*"T™ 5 A) so that A2 = A*. Therefore A? is a
projection (for O < A?) and hence A = (A2)z = (4%)2 = A2. O

COROLLARY 1. If A= A, then
T=BaU,

where B := T|pr(ay s a Coo contraction and U := T|xr(r—ay is unitary.

PROOF. Apply the above proposition to the preceding theorem. 0O

3. EXAMPLES

In this section we shall exhibit some classes of contractions for which the strong limit
A is a projection. These include compact, quasinormal and cohyponormal contractions.

ExaMPLE 1. If a contraction T is compact then A = A,.

ProoOF. If T is a contraction then T' = B & U, where B is a completely nonunitary
contraction and U is unitary (this is the well-known Nagy-Foias-Langer decomposition
for contractions already used in the theorem’s proof). However a completely nonunitary
contraction is weakly stable (i.e. B"—50 - see e.g. [5]). Therefore, if T is compact, then
B is compact and weakly stable so that it is in fact uniformly stable (i.e. B" %50 - see
e.g. [5]). Thus B is a Cyo contraction and hence A = A,. O

Recall that an operator T' is quasinormal if it commutes with 7*7T, subnormal if it
has a normal extension (i.e. if it is the restriction of a normal operator to an invariant
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subspace), hyponormal if 77* < T*T, and normaloid if its spectral radius is equal to its
norm (i.e. 7(T) = ||T||). These classes are related as follows (see e.g. [2, ch.IT]).

Normal C Quasinormal C Subnormal C Hyponormal C Normaloid.

EXAMPLE 2. IfT is a hyponormal contraction then A? = A, < A.

PrROOF. Let T be a contraction. Applying Nagy-Foias-Langer decomposition once again
we get T'= C U, where C' is a completely nonunitary contraction and U is unitary. Recall
that the restriction of a hyponormal operator to an invariant subspace is hyponormal as
well (see e.g. [2, p.47]). Thus C is a completely nonunitary hyponormal contraction and
hence C* is strongly stable (cf. [6], [9]). Equivalently C"C*"—50. Therefore T"T*" =
CnC* @ UMU 50 @ I = A, so that A, = A2 (for a direct proof of such idempotency
see [6]). Moreover T*"T" = C*"C™ @ U*"U"—=A’' & I = A, where A’ is the strong limit
of {C*"C™ n>1},sothat O <A O =A—-A,.. O

EXAMPLE 3. IfT is a quasinormal contraction then A2 = A, < A = A2.

Proor. It is readily verified by induction that TT*"T™ = T**T"T for every n > 1
whenever T' is a quasinormal operator. Thus, if a quasinormal operator T is a contraction
then TA = AT by the very definition of A. Hence A = A? according to Lemma 1. Since
a quasinormal operator is hyponormal, A2 = A, < A by the previous example. 0O

ExaMPLE 4. If T is a normal contraction then A = A,.
Proor. Recall that T**T" = T"T*™ for every n > 1 whenever T is a normal operator.(]

It is worth noticing that hyponormality, quasinormality and normality in Examples 2
to 4 cannot be weakened to normaloidness, subnormality and quasinormality, respectively.
That normality cannot be relaxed to quasinormality in Example 4 is trivial: a unilateral
shift is a quasinormal contraction for which A = I and A, = O. To verify that quasinor-
mality cannot be weakened to subnormality in Example 3 consider the following unilateral
weighted shift on /5

T = shift (a, 1,1,- ), a e (0,1).
This is a subnormal (see e.g. [2, p.58]) contraction for which A is a diagonal on /5,
A= diag (a27 L1, ')7

so that A # A? (indeed O = A, = A% < A%2 < A). Now by setting L = T & T* we get a
normaloid contraction such that L**L"—5A' = A® O and L"L*"—~5A' = O @ A, and
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hence A’ # A2 and A’ # A2, Thus hyponormality cannot be weakened to normaloidness
in Example 2. The diagram below summarizes the above discussion.

(A, =A) = (A2=A4,<A=4% = = (A2=A,<A)
T~ 1 R T~
Normal = Quasinormal = Subnormal = Hyponormal = Normaloid

QUESTION. Is there a property involving the operators A, and A that holds for any
subnormal contraction but not for every hyponormal contraction? In other words, is there
a property involving the operators A, and A that fills the gap in the above diagram?

4. A FINAL REMARK

It has been established by Sz.-Nagy and Foias [11] that a contraction T with A # O
and A, # O has a proper invariant subspace. Apostol pointed out in [1] that it was
unknown whether 7" has a proper invariant subspace if A # O; and proved that this was
the case for a noncoquasitriangular contraction. By the same time Putnam [8] proved
that this also was the case for a cohyponormal contraction; and later [9] he showed that a
cohyponormal contraction with A # O has in fact a unitary direct summand. Apparently
it still remains unknown whether a contraction with no proper invariant subspace is of
class Cpg. However the preceding theorem leads to the following classification that yields
an elementary new proof for the above mentioned result of [11].

COROLLARY 2. If a contraction has no proper invariant subspace then it is either a Cop,
a Co1 or a C1g contraction.

PROOF. Let T be a contraction on H. If {0} # N (A — A?) # H, then N (A — A?) is
a proper invariant subspace for T' (cf. Lemma 1). Similarly, if {0} # N (A, — A2) # H,
then N(A, — A?) is a proper invariant subspace for T* so that AV (A, — A2)* is a proper
invariant subspace for 7. Thus, if 7' has no proper invariant subspace, then there are only
four admissible cases:

i) NA-AH={0} and N

(ii) N(A - A?) ={0} and N
(iii ) N(A-A%)=H and N(A, — A2%) = {0},
(iv) N(A-A?)=H and N(A, — A%2) =H.

Case (i) in fact is impossible. It actually leads to N (A) = N(A.) = {0} according to
Lemma 2. Equivalently, T" is a C11 contraction; and Cy; contractions are quasi-similar to
unitary operators so that they have proper invariant subspaces (cf. [12, pp.78,79]). If
N (A, — A2) = H then T* = G, a strongly stable contraction, by the preceding theorem
(reason: T™* has no proper invariant subspace and hence no shift as a direct summand).
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If N(A— A?) = {0} then Lemma 2 says that N'(A) = {0}. Therefore case (ii) leads to a
C1o contraction. Similarly case (iii) leads to a Co; contraction. Finally, if N (A — A?) =
N(A, —A%2) =H, then T = B®S_ & S, ® U by the previous theorem. Hence T' = B,
which is of class Cyg, since S_, S and U clearly have proper invariant subspaces. Thus
case (iv) leads to a Cypp contraction. O
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