A DECOMPOSITION FOR A CLASS OF CONTRACTIONS*

Carlos S. Kubrusly, Paulo César M. Vieira and Denise O. Pinto

Abstract. A Hilbert-space contraction T is the direct sum of a strongly stable contraction and an isometry whenever the strong limit of $\{T^{*n}T^n; n \geq 1\}$ is a projection. This is the case for any compact, quasinormal or cohyponormal contraction. Such a decomposition leads to a simple proof that a contraction with no proper invariant subspace is of class $C_{00} \cup C_{01} \cup C_{10}$.

1. INTRODUCTION

Let T be an operator on a Hilbert space \mathcal{H} (i.e. a bounded linear transformation of a separable complex Hilbert space \mathcal{H} into itself). By a subspace of \mathcal{H} we mean a closed linear manifold of it. $\mathcal{N}(T)$ will denote the null subspace (i.e. the kernel) of T. A strongly stable operator T is one whose power sequence $\{T^n; n \geq 1\}$ converges strongly to O (i.e. $T^n \stackrel{s}{\longrightarrow} O$). Recall that a strongly stable operator is not necessarily a contraction (indeed not even necessarily similar to a contraction - cf. [4]). Let \mathcal{C}_{00} be the class of all strongly stable contractions whose adjoint also is strongly stable. The class of all strongly stable contractions T for which the adjoint T^* is such that $T^{*n}x \neq 0$ for every nonzero $x \in \mathcal{H}$ is denoted by \mathcal{C}_{01} . Similarly \mathcal{C}_{10} denotes the class of all contractions T whose adjoint is strongly stable and $T^nx \neq 0$ for every nonzero $x \in \mathcal{H}$. If T is a contraction (i.e. $||T|| \leq 1$) then $\{T^{*n}T^n; n \geq 1\}$ is a nonincreasing nonnegative sequence of contractions, thus strongly convergent. Let the operator A on \mathcal{H} be its strong limit. Since T^* is a contraction whenever T is, let the operator A_* on \mathcal{H} be the strong limit of $\{T^nT^{*n}; n \geq 1\}$.

Such strong limits A and A_* have played an important role in the theory of completely nonunitary contractions (i.e. those contractions that have no unitary direct summand; equivalently, those contraction T for which $\mathcal{N}(I-A) \cap \mathcal{N}(I-A_*) = \{0\}$ – see e.g. [6]). For instance, these have been investigated by Durszt [3] and Pták and Vrbová [7] towards

^{*} Supported in part by CNPq.

a generalization of Rota's model technique [10] (which in fact is applied to strongly stable contractions) to completely nonunitary contractions. The purpose of the present paper is to push forward such an investigation on the operators A and A_* . In particular, we shall establish a decomposition for contractions T for which A and A_* are projections. First we recall the following few well-known properties that will be required in the sequel (cf. [3], [6] and [7]).

- (1) O < A < I.
- (2) $||T^n x|| \to ||A^{\frac{1}{2}} x||$ as $n \to \infty$ for all $x \in \mathcal{H}$ (i.e. $T^{*n} T^n \xrightarrow{s} A \ge O$).
- (3) $||A^{\frac{1}{2}}T^nx|| = ||A^{\frac{1}{2}}x||$ for all $x \in \mathcal{H}$ and every $n \ge 1$ (i.e. $T^{*n}AT^n = A \ge O$).
- (4) $||AT^nx|| \to ||A^{\frac{1}{2}}x||$ as $n \to \infty$ for all $x \in \mathcal{H}$ (since $(I A)T^n \xrightarrow{s} O$).
- (5) $\mathcal{N}(A) = \{ x \in \mathcal{H} : T^n x \to 0 \}.$
- (6) $\mathcal{N}(I A) = \{x \in \mathcal{H} : ||T^n x|| = ||x|| \quad \forall n \ge 1\}.$

Properties (5) and (6) ensure that the subspaces $\mathcal{N}(A)$ and $\mathcal{N}(I-A)$ are invariant under T. Also note from (5) that a contraction T is strongly stable if and only if A=O, so that a contraction T is of class \mathcal{C}_{00} if and only if $A=A_*=O$. Similarly, the classes \mathcal{C}_{01} and \mathcal{C}_{10} comprise those contractions T for which either A=O and $\mathcal{N}(A_*)=\{0\}$, or $A_*=O$ and $\mathcal{N}(A)=\{0\}$, respectively. According to (1) A is idempotent (i.e. $A=A^2$) if and only if it is a projection (i.e. an orthogonal projection). Moreover it is readly verified from (2) and (3) that ||A||=1 whenever $A\neq O$, which is a property of projections. However A may not be idempotent for an arbitrary contraction T (e.g. for $\mathcal{H}=\ell_2$ and $T=\mathrm{shift}(k^{\frac{1}{2}}(k+2)^{\frac{1}{2}}/(k+1); \quad k\geq 1)$ it follows that $A=\mathrm{diag}(k/k+1; \quad k\geq 1)$, so that $\mathcal{N}(A-A^2)$ may even be null). Indeed A will be a projection if and only if it commutes with T. Such an equivalence is in fact an immediate corollary to the following lemma.

LEMMA 1. $\mathcal{N}(A-A^2)$ is the largest subspace of \mathcal{H} that is contained in $\mathcal{N}(AT-TA)$ and is invariant for T.

PROOF. Take an arbitrary contraction T. First note that

$$(||AT^nx|| - ||Ax||)^2 \le ||AT^nx - T^nAx||^2 \le ||AT^nx||^2 - ||Ax||^2$$

for all $x \in \mathcal{H}$ and every $n \geq 1$ (the second inequality comes from (3)). Next recall that

$$||(A - A^2)^{\frac{1}{2}}x||^2 = ||A^{\frac{1}{2}}x||^2 - ||Ax||^2$$

and, by using property (3) again, for every $n \ge 1$

$$||Ax|| \le ||AT^n x|| \le ||A^{\frac{1}{2}} T^n x|| = ||A^{\frac{1}{2}} x||,$$

for all $x \in \mathcal{H}$. Since $\mathcal{N}(A - A^2) = \mathcal{N}((A - A^2)^{\frac{1}{2}})$ the above three results and property (4) ensure that

$$\mathcal{N}(A - A^2) = \{ x \in \mathcal{H} : ||A^{\frac{1}{2}}x|| = ||Ax|| \} = \{ x \in \mathcal{H} : ||AT^n x|| = ||Ax|| \ \forall n \ge 1 \}$$
$$= \{ x \in \mathcal{H} : AT^n x = T^n Ax \ \forall n \ge 1 \} \subseteq \mathcal{N}(AT - TA);$$

and also that $\mathcal{N}(A-A^2)$ is invariant for T. Now let \mathcal{M} be a subspace of \mathcal{H} , contained in $\mathcal{N}(AT-TA)$ and invariant for T. Take $x \in \mathcal{M}$ arbitrary. It is readily verified by induction that $T^nAx = AT^nx$ for every $n \geq 1$. Thus $x \in \mathcal{N}(A-A^2)$. Therefore $\mathcal{M} \subseteq \mathcal{N}(A-A^2)$.

The next lemma exhibts an invariant subspace decomposition for the invariant subspace $\mathcal{N}(A-A^2)$. This will be our starting point for establishing a decomposition for contractions with $\mathcal{N}(A-A^2) = \mathcal{H}$.

LEMMA 2.
$$\mathcal{N}(A - A^2) = \mathcal{N}(A) \oplus \mathcal{N}(I - A)$$
.

PROOF. Since $\mathcal{N}(A) \cup \mathcal{N}(I-A) \subseteq \mathcal{N}(A-A^2)$, and since $\mathcal{N}(A) \perp \mathcal{N}(I-A)$ (for A is self-adjoint), it follows that $\mathcal{N}(A) \oplus \mathcal{N}(I-A) \subseteq \mathcal{N}(A-A^2)$. On the other hand, since $\mathcal{N}(A-A^2)$ is invariant under the self-adjoint adjoint operator A it reduces A. Thus $A = A_0 \oplus A_1$, with $A_0 = A|_{\mathcal{N}(A-A^2)}$ and $A_1 = A|_{\mathcal{N}(A-A^2)^{\perp}}$. Note that A_0 is a projection on $\mathcal{N}(A-A^2)$ (for $O \leq A_0$ and $A_0 = A_0^2$). Hence $\mathcal{N}(A-A^2) = \mathcal{N}(A_0) \oplus \mathcal{N}(A_0)^{\perp} = \mathcal{N}(A_0) \oplus \mathcal{N}(I-A_0)$. However $\mathcal{N}(A_0) \subseteq \mathcal{N}(A)$ and $\mathcal{N}(I-A_0) \subseteq \mathcal{N}(A) \oplus \mathcal{N}(I-A)$, so that $\mathcal{N}(A_0) \oplus \mathcal{N}(I-A_0) \subseteq \mathcal{N}(A) \oplus \mathcal{N}(I-A)$. Therefore $\mathcal{N}(A-A^2) \subseteq \mathcal{N}(A) \oplus \mathcal{N}(I-A)$. \square

2. A DECOMPOSITION FOR CONTRACTIONS WITH $A = A^2$

Recall that, for an arbitrary contraction T, the Nagy-Foias-Langer decomposition (cf. [12, p.9,52]) says that $T = C \oplus U$ where C is a completely nonunitary contraction and U is unitary. A particular case of it is obtained when T is an isometry leading to the von Neumann-Wold decomposition for isometries, which says that $T = S_+ \oplus U$ where S_+ is a unilateral shift. We shall now focus on an intermediate situation. A contraction is an isometry if and only if A = I (cf. property (3)). Let us relax this a little by asking only that A (and/or A_*) be a projection.

Let T be a contraction and let A and A_* be such that $T^*nT^n \xrightarrow{s} A$ and $T^nT^{*n} \xrightarrow{s} A_*$. The following implications are trivially verified. (i) If $T = G \oplus S_+ \oplus U$, where G is a strongly stable contraction, S_+ is a unilateral shift and U is unitary, then $A = A^2$. Moreover, (ii) if $G = B \oplus S_-$, where B is a C_{00} contraction and S_- is a backward unilateral shift (i.e. the adjoint of a unilateral shift), then $A = A^2$ and $A_* = A_*^2$. Furthermore, (iii) if $T = B \oplus U$ then $A = A_*$. The next theorem and the following corollary establish the converses (it is of course understood that any of the direct summands in the decompositions below may be missing).

THEOREM. Let T be a contraction on \mathcal{H} . If $A = A^2$ then

$$T = G \oplus V$$
,

where $G := T|_{\mathcal{N}(A)}$ is a strongly stable contraction and $V := T|_{\mathcal{N}(I-A)}$ is an isometry. Moreover, the von Neumann-Wold decomposition for the isometry V,

$$V = S_+ \oplus U$$
,

is such that the unilateral shift S_+ is equal to $T|_{\mathcal{N}(I-A)\cap\mathcal{N}(A_*)}$ and the unitary operator U is equal to $T|_{\mathcal{N}(I-A)\cap\mathcal{N}(I-A_*)}$. Furthermore, if $A=A^2$ and $A_*=A_*^2$ then

$$G = B \oplus S_{-}$$

where $B := T|_{\mathcal{N}(A) \cap \mathcal{N}(A_*)}$ is a \mathcal{C}_{00} contraction and $S_- := T|_{\mathcal{N}(A) \cap \mathcal{N}(I-A_*)}$ is a backward unilateral shift.

PROOF. Suppose $\mathcal{H} \neq \{0\}$ to avoid trivialities. If $A = A^2$ then Lemma 2 ensures that $\mathcal{H} = \mathcal{N}(A) \oplus \mathcal{N}(I - A)$. Since $\mathcal{N}(A)$ and $\mathcal{N}(I - A)$ are clearly invariant under T (cf. (5) and (6)) they reduce T. Thus we get the (orthogonal direct sum) decomposition

$$T = G \oplus V$$

on $\mathcal{H} = \mathcal{N}(A) \oplus \mathcal{N}(I - A)$, where $G := T|_{\mathcal{N}(A)}$ is a strongly stable contraction and $V := T|_{\mathcal{N}(I-A)}$ is an isometry, according to (5) and (6), respectively. However, by Nagy-Foias-Langer decomposition for contractions (cf. [12, p.9,52]),

$$V = S_+ \oplus U$$

on $\mathcal{N}(I-A) = \mathcal{K}^{\perp} \oplus \mathcal{K}$, where $S_{+} := V|_{\mathcal{K}^{\perp}}$ is a completely nonunitary isometry (which means a pure isometry, or equivalently a unilateral shift - see e.g. [2, p.15]) and $U := V|_{\mathcal{K}}$ is unitary; with

$$\mathcal{K} := \{ x \in \mathcal{N}(I - A) : \quad ||V^n x|| = ||V^{*n} x|| = ||x|| \quad \forall n \ge 1 \}$$

$$= \{ x \in \mathcal{N}(I - A) : \quad ||V^{*n} x|| = ||x|| \quad \forall n \ge 1 \}$$

$$= \{ x \in \mathcal{N}(I - A) : \quad ||T^{*n} x|| = ||x|| \quad \forall n \ge 1 \}$$

$$= \mathcal{N}(I - A) \cap \mathcal{N}(I - A_*)$$

(since $T = G \oplus V$ on $\mathcal{H} = \mathcal{N}(A) \oplus \mathcal{N}(I - A)$ - cf. (6)). Thus $V|_{\mathcal{K}} = T|_{\mathcal{N}(I - A) \cap \mathcal{N}(I - A_*)}$. Now note that $\mathcal{K}^{\perp} = \mathcal{N}(I - A) \ominus \mathcal{K} \subseteq \mathcal{N}(A_*) \subseteq \mathcal{N}(A) \oplus \mathcal{K}^{\perp}$ (since $T^* = G^* \oplus S_+^* \oplus U^*$ on $\mathcal{H} = \mathcal{N}(A) \oplus \mathcal{K}^{\perp} \oplus \mathcal{K}$ and $S_+^{*n} \xrightarrow{s} O$ - cf. (5)). Hence $\mathcal{N}(I - A) \cap \mathcal{N}(A_*) \subseteq \mathcal{N}(I - A) \cap \mathcal{N}(A_*) \oplus \mathcal{K}^{\perp} = \mathcal{N}(I - A) \cap \mathcal{N}(A_*)$. Therefore

$$\mathcal{K}^{\perp} = \mathcal{N}(I - A) \cap \mathcal{N}(A_*)$$

and hence $V|_{\mathcal{K}^{\perp}} = T|_{\mathcal{N}(I-A)\cap\mathcal{N}(A_*)}$. Next suppose $\mathcal{N}(A) \neq \{0\}$ (otherwise the remaing results are trivial) and let A'_* on $\mathcal{N}(A)$ be the strong limit of $\{G^nG^{*n}; n \geq 1\}$ so that $A_* = A'_* \oplus O \oplus I$ and $(I - A_*) = (I - A'_*) \oplus I \oplus O$ on $\mathcal{H} = \mathcal{N}(A) \oplus \mathcal{K}^{\perp} \oplus \mathcal{K}$. Thus $\mathcal{N}(A_*) = \mathcal{N}(A'_*) \oplus \mathcal{K}^{\perp} \subseteq \mathcal{N}(A) \oplus \mathcal{K}^{\perp}$ so that

$$\mathcal{N}(A'_*) = \mathcal{N}(A_*) \cap \mathcal{N}(A),$$

and $\mathcal{N}(I - A_*) = \mathcal{N}(I - A_*) \oplus \mathcal{K} \subseteq \mathcal{N}(A) \oplus \mathcal{K}$ so that

$$\mathcal{N}(I - A_*') = \mathcal{N}(I - A_*) \cap \mathcal{N}(A).$$

If (in addition to $A = A^2$) $A_* = A_*^2$ then $A'_* = A_*^{'2}$. Hence $\mathcal{N}(A) = \mathcal{N}(A'_*) \oplus \mathcal{N}(I - A'_*)$ by Lemma 2. Since $\mathcal{N}(A'_*)$ and $\mathcal{N}(I - A'_*)$ are invariant under G^* (cf. (5) and (6)) they are reducing subspaces for G^* , and so are they for G. Thus we get the decomposition

$$G = B \oplus S_{-}$$

on $\mathcal{N}(A) = \mathcal{N}(A'_*) \oplus \mathcal{N}(I - A'_*)$, where $B := G|_{\mathcal{N}(A'_*)} = T|_{\mathcal{N}(A_*) \cap \mathcal{N}(A)}$ and $S_- := G|_{\mathcal{N}(I - A'_*)} = T|_{\mathcal{N}(I - A_*) \cap \mathcal{N}(A)}$, so that B is a \mathcal{C}_{00} contraction and S_- is a strongly stable coisometry (cf. (5) and (6) once again). Thus S_- is a completely nonunitary coisometry, and hence its adjoint is a completely nonunitary isometry (i.e. a unilateral shift). \square

PROPOSITION. If $A = A_*$ then $A = A^2$.

PROOF. If $A = A_*$ then (cf. property (3)) $A = T^{*n}AT^n = T^{*n}A_*T^n = T^{*n}T^nA_*T^{*n}T^n$ for every $n \ge 1$. Thus $A = A^3$ (since $T^{*n}T^n \stackrel{s}{\longrightarrow} A$) so that $A^2 = A^4$. Therefore A^2 is a projection (for $O \le A^2$) and hence $A = (A^2)^{\frac{1}{2}} = (A^4)^{\frac{1}{2}} = A^2$. \square

Corollary 1. If $A = A_*$ then

$$T = B \oplus U$$
,

where $B := T|_{\mathcal{N}(A)}$ is a \mathcal{C}_{00} contraction and $U := T|_{\mathcal{N}(I-A)}$ is unitary.

Proof. Apply the above proposition to the preceding theorem. \Box

3. EXAMPLES

In this section we shall exhibit some classes of contractions for which the strong limit A is a projection. These include compact, quasinormal and cohyponormal contractions.

Example 1. If a contraction T is compact then $A = A_*$.

PROOF. If T is a contraction then $T = B \oplus U$, where B is a completely nonunitary contraction and U is unitary (this is the well-known Nagy-Foias-Langer decomposition for contractions already used in the theorem's proof). However a completely nonunitary contraction is weakly stable (i.e. $B^n \xrightarrow{w} O$ - see e.g. [5]). Therefore, if T is compact, then B is compact and weakly stable so that it is in fact uniformly stable (i.e. $B^n \xrightarrow{u} O$ - see e.g. [5]). Thus B is a C_{00} contraction and hence $A = A_*$. \square

Recall that an operator T is quasinormal if it commutes with T^*T , subnormal if it has a normal extension (i.e. if it is the restriction of a normal operator to an invariant

subspace), hyponormal if $TT^* \leq T^*T$, and normaloid if its spectral radius is equal to its norm (i.e. r(T) = ||T||). These classes are related as follows (see e.g. [2, ch.II]).

Normal \subset Quasinormal \subset Subnormal \subset Hyponormal \subset Normaloid.

Example 2. If T is a hyponormal contraction then $A_*^2 = A_* \leq A$.

PROOF. Let T be a contraction. Applying Nagy-Foias-Langer decomposition once again we get $T = C \oplus U$, where C is a completely nonunitary contraction and U is unitary. Recall that the restriction of a hyponormal operator to an invariant subspace is hyponormal as well (see e.g. [2, p.47]). Thus C is a completely nonunitary hyponormal contraction and hence C^* is strongly stable (cf. [6], [9]). Equivalently $C^nC^{*n} \xrightarrow{s} O$. Therefore $T^nT^{*n} = C^nC^{*n} \oplus U^nU^{*n} \xrightarrow{s} O \oplus I = A_*$ so that $A_* = A_*^2$ (for a direct proof of such idempotency see [6]). Moreover $T^{*n}T^n = C^{*n}C^n \oplus U^{*n}U^n \xrightarrow{s} A' \oplus I = A$, where A' is the strong limit of $\{C^{*n}C^n; n \geq 1\}$, so that $O \leq A' \oplus O = A - A_*$. \square

Example 3. If T is a quasinormal contraction then $A_*^2 = A_* \le A = A^2$.

PROOF. It is readily verified by induction that $TT^{*n}T^n = T^{*n}T^nT$ for every $n \geq 1$ whenever T is a quasinormal operator. Thus, if a quasinormal operator T is a contraction then TA = AT by the very definition of A. Hence $A = A^2$ according to Lemma 1. Since a quasinormal operator is hyponormal, $A_*^2 = A_* \leq A$ by the previous example. \square

Example 4. If T is a normal contraction then $A = A_*$.

PROOF. Recall that $T^{*n}T^n = T^nT^{*n}$ for every $n \ge 1$ whenever T is a normal operator.

It is worth noticing that hyponormality, quasinormality and normality in Examples 2 to 4 cannot be weakened to normaloidness, subnormality and quasinormality, respectively. That normality cannot be relaxed to quasinormality in Example 4 is trivial: a unilateral shift is a quasinormal contraction for which A = I and $A_* = O$. To verify that quasinormality cannot be weakened to subnormality in Example 3 consider the following unilateral weighted shift on ℓ_2

$$T = \text{shift } (\alpha, 1, 1, \cdots), \qquad \alpha \in (0, 1).$$

This is a subnormal (see e.g. [2, p.58]) contraction for which A is a diagonal on ℓ_2 ,

$$A = \operatorname{diag}(\alpha^2, 1, 1, \cdots),$$

so that $A \neq A^2$ (indeed $O = A_* = A_*^2 < A^2 \leq A$). Now by setting $L = T \oplus T^*$ we get a normaloid contraction such that $L^{*n}L^n \xrightarrow{s} A' = A \oplus O$ and $L^nL^{*n} \xrightarrow{s} A'_* = O \oplus A$, and

hence $A' \neq A^{'2}$ and $A'_* \neq A^{'2}_*$. Thus hyponormality cannot be weakened to normaloidness in Example 2. The diagram below summarizes the above discussion.

QUESTION. Is there a property involving the operators A_* and A that holds for any subnormal contraction but not for every hyponormal contraction? In other words, is there a property involving the operators A_* and A that fills the gap in the above diagram?

4. A FINAL REMARK

It has been established by Sz.-Nagy and Foias [11] that a contraction T with $A \neq O$ and $A_* \neq O$ has a proper invariant subspace. Apostol pointed out in [1] that it was unknown whether T has a proper invariant subspace if $A \neq O$; and proved that this was the case for a noncoquasitriangular contraction. By the same time Putnam [8] proved that this also was the case for a cohyponormal contraction; and later [9] he showed that a cohyponormal contraction with $A \neq O$ has in fact a unitary direct summand. Apparently it still remains unknown whether a contraction with no proper invariant subspace is of class C_{00} . However the preceding theorem leads to the following classification that yields an elementary new proof for the above mentioned result of [11].

COROLLARY 2. If a contraction has no proper invariant subspace then it is either a C_{00} , a C_{01} or a C_{10} contraction.

PROOF. Let T be a contraction on \mathcal{H} . If $\{0\} \neq \mathcal{N}(A - A^2) \neq \mathcal{H}$, then $\mathcal{N}(A - A^2)$ is a proper invariant subspace for T (cf. Lemma 1). Similarly, if $\{0\} \neq \mathcal{N}(A_* - A_*^2) \neq \mathcal{H}$, then $\mathcal{N}(A_* - A_*^2)$ is a proper invariant subspace for T^* so that $\mathcal{N}(A_* - A_*^2)^{\perp}$ is a proper invariant subspace for T. Thus, if T has no proper invariant subspace, then there are only four admissible cases:

(i)
$$\mathcal{N}(A - A^2) = \{0\}$$
 and $\mathcal{N}(A_* - A_*^2) = \{0\},$

(ii)
$$\mathcal{N}(A - A^2) = \{0\}$$
 and $\mathcal{N}(A_* - A_*^2) = \mathcal{H}$,

(iii)
$$\mathcal{N}(A-A^2) = \mathcal{H}$$
 and $\mathcal{N}(A_*-A_*^2) = \{0\},$

(iv)
$$\mathcal{N}(A - A^2) = \mathcal{H}$$
 and $\mathcal{N}(A_* - A_*^2) = \mathcal{H}$.

Case (i) in fact is impossible. It actually leads to $\mathcal{N}(A) = \mathcal{N}(A_*) = \{0\}$ according to Lemma 2. Equivalently, T is a \mathcal{C}_{11} contraction; and \mathcal{C}_{11} contractions are quasi-similar to unitary operators so that they have proper invariant subspaces (cf. [12, pp.78,79]). If $\mathcal{N}(A_* - A_*^2) = \mathcal{H}$ then $T^* = G$, a strongly stable contraction, by the preceding theorem (reason: T^* has no proper invariant subspace and hence no shift as a direct summand).

If $\mathcal{N}(A-A^2)=\{0\}$ then Lemma 2 says that $\mathcal{N}(A)=\{0\}$. Therefore case (ii) leads to a \mathcal{C}_{10} contraction. Similarly case (iii) leads to a \mathcal{C}_{01} contraction. Finally, if $\mathcal{N}(A-A^2)=\mathcal{N}(A_*-A_*^2)=\mathcal{H}$, then $T=B\oplus S_-\oplus S_+\oplus U$ by the previous theorem. Hence T=B, which is of class \mathcal{C}_{00} , since S_- , S_+ and U clearly have proper invariant subspaces. Thus case (iv) leads to a \mathcal{C}_{00} contraction. \square

REFERENCES

- 1. C. Apostol, Quasitriangularity in Hilbert space, *Indiana Univ. Math. J.* **22** (1973) 817–825.
- 2. J.B. Conway, *The Theory of Subnormal Operators* (American Mathematical Society, Providence, 1991).
- 3. E. Durszt, Contraction as restricted shifts, Acta Sci. Math. 48 (1985) 129–134.
- 4. C.S. Kubrusly, Strong stability does not imply similarity to a contraction, *Syst. Control Lett.* **14** (1990) 349–352.
- 5. C.S. Kubrusly, Similarity to contractions and weak stability, *Advan. Math. Sci. Appl.* **2** (1993) 335-343.
- 6. C.S. Kubrusly and P.C.M. Vieira, Strong stability for cohyponormal operators, *J. Operator Theory* **31** (1994) 123–127.
- 7. V. Pták and P. Vrbová, An abstract model for compressions, *Casopis Pest. Mate.* **113** (1988) 252–259.
- 8. C.R. Putnam, Resolvent vectors, invariant subspaces, and sets of zero capacity, *Math. Ann.* **205** (1973) 165–171.
- 9. C.R. Putnam, Hyponormal contractions and strong power convergence, *Pacific J. Math.* **57** (1975) 531–538.
- 10. G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960) 469–472.
- 11. B. Sz.-Nagy and C. Foias, Sur les contractions de l'espace de Hilbert IX. Factorisations de la fonction caracteristique. Sous-espaces invariants, *Acta Sci. Math.* **25** (1964) 283–316.
- 12. B. Sz.-Nagy and C. Foias, *Harmonic Analysis of Operators on Hilbert Space* (North-Holland, Amsterdam, 1970).

Carlos S. Kubrusly Catholic University-PUC/RJ, 22451-041, Rio de Janeiro, Brazil; and Nat. Lab. for Scientific Computation - LNCC, 22290-160, Rio de Janeiro, Brazil. Paulo Cesar M. Vieira Denise O. Pinto
Nat. Lab. for Scientific Catholic University-PUC/RJ,
Computation - LNCC, 22451-041, Rio de Janeiro,
22290-160, Rio de Janeiro, Brazil.
Brazil.