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CONVERGENCE OF POWER SEQUENCES OF OPERATORS
VIA THEIR STABILITY

ZENON JAN JABLONSKI, IL BONG JUNG, CARLOS KUBRUSLY, AND JAN STOCHEL

ABSTRACT. This paper is concerned with the convergence of power sequences
and stability of Hilbert space operators, where “convergence” and “stability”
are considered with respect to weak, strong and norm topologies. It is proved
that an operator has a convergent power sequence if and only if it is a (not nec-
essarily orthogonal) direct sum of an identity operator and a stable operator.
This reduces the issue of convergence of the power sequence of an operator T
to the study of stability of T. The question of when the limit of the power se-
quence is an orthogonal projection is investigated. Among operators sharing
this property are hyponormal and contractive ones. In particular, a hyponor-
mal or a contractive operator with no identity part is stable if and only if its
power sequence is convergent. In turn, a unitary operator has a weakly con-
vergent power sequence if and only if its singular-continuous part is weakly
stable and its singular-discrete part is the identity. Characterizations of the
convergence of power sequences and stability of subnormal operators are given
in terms of semispectral measures.

1. INTRODUCTION

The notion of operator stability is linked to a discrete, time-invariant, free, linear
dynamical system modelled by the autonomous homogeneous difference equation:

Tpt1 =TT, n=0,1,2,..., (1.1)

with the initial condition xg = z € X, where X is a normed space, x is a vector in
X and T is a bounded linear operator on X, whose solution is given by the formula

Tn=T"z, n=0,1,2,....

The above discrete system is asymptotically stable if {T"z}2° ; converges to zero
for every initial condition x. Of course, the meaning of the term “convergence”
depends on the topology with which X is equipped. For a given operator T, the
operator-valued power sequence {T"}2° ; of T' may converge to zero, in the sense
that the X-valued sequence {T"x}5° ; converges to zero for every z, either in the
weak or norm topology of X, or in the uniform norm topology of the corresponding
operator space, giving rise to the notions of weak, strong, and uniform stability for
the operator T. (These notions will be clarified in Section 2.) Thus, weak stability
refers to the weakest way in which the linear discrete system (1.1) approaches
asymptotically zero for all initial conditions. In infinite dimensions (which is our
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case), this concept has a continuous counterpart linked to mild solutions of certain
partial differential equations. We refer the reader to [36] for a beautiful presentation
of the limit properties of discrete-time distributed parameter systems and to [10]
for the general theory of discrete time-invariant linear systems.

The purpose of this paper is to study the convergence of power sequences and
stability of operators acting on complex Hilbert spaces. Convergence and stability
refer to weak, strong and norm topologies. One of the main results of the paper,
Theorem 3.2, states, inter alia, the following.

0° An operator has a weakly (strongly, norm) convergent power sequence if and
only if it is a (not necessarily orthogonal) direct sum of two operators, the
first of which is the identity on a precisely described space, and the second is
weakly (strongly, uniformly) stable.

In other words, the issue of weak (strong, norm) convergence of power sequences
reduces to the study of weak (strong, uniform) stability. As an immediate conse-
quence, we obtain that an operator is weakly (strongly, uniformly) stable if and
only if its power sequence converges weakly (strongly, in norm) and 1 is not its
eigenvalue (see [21, Theorem 1]). In fact, operators whose power sequences are
weakly (strongly, norm) convergent are completely characterized by the similarity
to operators whose power sequences converge weakly (strongly, in norm) to orthog-
onal projections (see Corollary 3.4). For this reason, a significant part of the paper
is devoted to the situation when the weak (strong, norm) limit of the power se-
quence of an operator is an orthogonal projection (see Section 4). Below are some
important excerpts from this article.

1° A hyponormal or a contractive operator with no identity part is weakly (strongly,
uniformly) stable if and only if its power sequence converges weakly (strongly,
in norm) (see Corollary 4.5).

2° If the power sequence of an operator T with liminf, o ||T"|| < 1 is weakly

convergent, then its limit is an orthogonal projection which commutes with T
(see Theorem 4.12).

3° A unitary operator has a weakly convergent power sequence if and only if its
singular-continuous part is weakly stable and its singular-discrete part is the
identity operator; each part may be absent (see Theorem 5.5).

4° Characterizations of the weak (strong, uniform) convergence of power se-
quences and the corresponding stability of subnormal operators are stated in
terms of their semispectral measures (see Section 6).

The present paper was partially inspired by [4] and [16]. All concepts used above
will be defined in the subsequent sections. The paper is organized as follows. Basic
notation and terminology are summarized in Section 2. The weak (strong, norm)
convergence of power sequences and the corresponding stability of general opera-
tors are studied in Section 3. In Section 4, we investigate the question of when the
weak limit of the power sequence of an operator is an orthogonal projection. In
particular, regarding 2°, we give an example of a weakly stable operator T' such
that liminf, . [|[T"| = 1 and limsup,,_, ., |T™| takes a predetermined numerical
value from the open interval (1,00) (see Example 4.14). The special case of uni-
tary operators is treated in Section 5. The weak (strong, uniform) convergence of
power sequences and the related stability of subnormal operators is investigated in
Section 6
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2. NOTATION AND TERMINOLOGY

We write T = {z € C: |z| = 1} and D = {z € C: |z| < 1}. By an operator T
on a complex Hilbert space H with inner product {-,-) we mean a bounded linear
transformation of HH into itself. Let B(J) stand for the C*-algebra of all operators
on H. We write I for the identity operator on H. We use the same symbol || - || for
the norm on H and for the induced operator norm on B(H). Let T € B(H). The
kernel and the range of T" are denoted by N(T') and R(T), respectively. We write
o(T), r(T) and w(T) for the spectrum, the spectral radius and the numerical radius
of T, respectively. The operator T is a normaloid if r(T') = ||T||, a contraction (or a
contractive operator) if ||T|| < 1, a strict contraction if | T|| < 1, and power bounded
if sup,,>1 [T < oo.

The power sequence {T"}52; of T € B(H) converges weakly if the H-valued se-
quence {T"x}2 ; converges weakly for every x € J, that is, the complex valued
sequence {(T"z,y)}5° ; converges for all z,y € H. Using the uniform boundedness
principle and the Riesz representation theorem one can verify that {T"}22; con-
verges weakly if and only if there exists an operator A € B(H) such that {T"z}2
converges weakly to Az for every x € H (notation: T"z —~ Azx), or equivalently
that (T"z,y) — (Az,y) as n — oo for all z,y € H. With the above discussion in
mind, we are ready to define the key concepts of this paper. Let T, A € B(H). We
say that the power sequence {T™}5° , of T

e converges weakly to A (notation: T™ -~ A) if (T™z,y) — (Ax,y) as n — oo

for all z,y € I,
e converges strongly to A if {T"x}S° , converges to Az in norm as n — oo for
every x € .

An operator T' € B(H) is said to be

o weakly (strongly, uniformly) stable if the power sequence {T7}5° , of T con-
verges weakly (strongly, in norm) to the zero operator.

The following fact is well known (cf. [18, p. 10]).

An operator T € B(H) is uniformly stable if and only if r(T) < 1. More-

over, if T is a normaloid, then T is uniformly stable if and only if || T|| < 1. (1)

By the uniform boundedness principle, the weak convergence of {T™}2° ; implies
the power boundedness of T'. Hence, using the spectral radius formula, we obtain.

If T e B(H) is normaloid and {T™}2, is weakly convergent, (2.2)
then T is a contraction. '

We refer the reader to [8] and [18] for more information on this subject.

Recall that an operator T' € B(H) is normal if TT* = T*T, hyponormal if
TT* < T*T, an isometry if T*T = I, and unitary if TT* = T*T = I. The operator
T is subnormal if T is the restriction of a normal operator to its invariant subspace
(i.e., a closed vector subspace). If the only subspace of X reducing N and containing
H is X itself, then N is called a minimal normal extension of T. These classes of
operators are related to each other as follows (see [6, Propositions 11.4.2 and 11.4.6]).

Subnormal operators are hyponormal and hyponormal operators are (2.3)
normaloid. '

More details on the above-mentioned classes of operators can be found in [6].
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If X is a subset of 3, then we write Xt = {z € H:z L X}. Let T € B(H).
A subspace M of a Hilbert space H is reducing for T' (or M reduces T') if M is
invariant for both T and T* or, equivalently, if M and M+ are both invariant
for T. A part of T is understood as the restriction of T' to any of its reducing
subspaces. (Sometimes the term “part” is defined as the restriction of an operator
to its invariant subspace, but this is not our case.) Weak convergence behaves well
with respect to orthogonal parts and sums. Indeed, if X @ L is the orthogonal sum
of Hilbert spaces K and L, S@® T and A @ B are the orthogonal sums of operators
S,Ae B(X)andT,B € B(L), then (S@T)" = S"@T™" for every integer n > 0 and

(SeT)" > A® B ifand only if S -5 A and T™ -~ B. (2.4)

In particular, S @& T is weakly stable if and only if S and T are weakly stable.
The same properties are shared by strong and operator norm topologies. Similar
assertions can be stated for direct sums of operators, as discussed in Section 3.

3. CONVERGENCE OF POWER SEQUENCES

In this section, we extend a result from [4] on the weak convergence of power
sequences of unitary operators, showing that it is in fact valid for arbitrary oper-
ators, however, at the cost of losing the orthogonality of the limit projection (see
Theorem 3.2). For the convenience of the reader, we state the original result ex-
plicitly.

Lemma 3.1 ([4, Lemma 3.6)). Let U be a unitary operator on a Hilbert space.
(i) If U™ = P, then P is an orthogonal projection such that R(P) = N(I—U).
(ii) U is weakly stable if and only if U™ -5 P and N(I —U) = {0}.

It is worth pointing out that part (ii) of Lemma 3.1 holds for arbitrary operators
(see [21, Theorem 1]).

Before we formulate the main result of this section, we will summarize the basic
facts about (not necessarily orthogonal) projections in Hilbert spaces, where by a
projection we mean an operator P € B(J) which is an idempotent, that is, P? = P.

o If P € B(H) is a projection, then R(P) and R(I — P) are closed and 3 =
R(P) + R(I — P), where + means direct (algebraic) sum. Moreover, H =
R(P) & R(I — P) if and only if P is selfadjoint.

e Conversely, by the closed graph theorem, if H = H; + Hsy, where H; and Hs
are subspaces of J(, then there exists a unique projection P € B(H) such
that R(P) = H; and R(I — P) = Hs.

e Let 3{; and J(3 be subspaces of H such that H = F(; + Hy, T1 € B(3{(;) and
Ty € B(3(3). We write T = Ty + T, for the operator T € B(H) given by
T(x1 4+ x2) = Thx1 + Toxs for 1 € Hy and 9 € Hy. Then TP = PT, where
P € B(H) is a unique projection with R(P) = Iy and R(I — P) = Ho.

e Conversely, if TP = PT for some projection P € B(H), then T decomposes
as T =Ty 4 Ty, where T1 € B(R(P)) and Tz € B(R(I — P)).

Theorem 3.2. Let T € B(H). Then the following statements hold:

(i) if {T™}2, converges weakly (strongly, in norm) to P € B(XH), then P is a
projection with R(P) = N(I —T) and T decomposes as T = I+ L with respect
to the direct decomposition H = R(P)+R(I— P), where L is weakly (strongly,
uniformly) stable,
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(ii) if P € B(H) is a projection and T decomposes as T = I 4+ L with respect to
the direct decomposition H = R(P) + R(I — P), where L is weakly (strongly,
uniformly) stable, then {T™}2° , converges weakly (strongly, in norm) to P,

(i) T is weakly (strongly, uniformly) stable if and only if N(I —T) = {0} and

{T"}2° , is weakly (strongly, norm) convergent.

Proof. First, we deal with the case of weak topology.

(i) Suppose that {T"}5° ; converges weakly to P € B(H). It follows from [21,
Theorem 1] that P is a projection which commutes with 7' For the reader’s conve-
nience, we sketch a slightly different proof of this fact. Since T —*» P as n — o0,
we see that for k > 1, T"t% 5 P as n — oo. Using the fact that multiplication
in B(X) is separately weakly continuous, we deduce that for k > 1, 7"tk 5 pT*
as n — 00. Thus, P = PT* for k > 1. Passing to the limit as k — oo, we conclude
that P = P2. Arguing as above, we get

PT = (weak) lim 77T = P = (weak) lim TT" =TP. (3.1)

n— 00 n—oo

Hence, P commutes with 7.

Now, we show that R(P) = N(I —T). Take z € R(P). Since P = P?, we see that
Pz = x. Hence, by (3.1), I —T)x = (I —T)P =0,s0 z € N(I —T). Conversely,
if & € N(I —T), then T™z = x for all n > 1. Passing to the limit as n — oo yields
Pz =z, so x € R(P). This shows that R(P) = N(I —T'). By (3.1), T' decomposes
as T = I + L with respect to the direct decomposition H = R(P) + R(I — P).

It remains to show that L is weakly stable. For, since {T"}° ; is weakly con-
vergent, so is {L™}° ;. Applying what was proved above to L instead of T, we
see that the weak limit of {L"}22, is a projection acting on R(I — P) with range
N(I — L). Noting that N(I — L) = {0}, we conclude that L is weakly stable.

(ii) Tt is easy to verify that under the assumptions of (ii), {T"}2°; converges
weakly to @ € B(H), where Q decomposes as Q@ = I + 0 with respect to H =
R(P) + R(I — P). This implies that Q = P.

(iii) This statement follows easily from (i).

Our next goal is to cover the cases of strong and norm topologies. Due to the
similarity of the proof, we will only consider the case of strong topology. Thus, if
{T™}%2, is strongly convergent to P € B(J(), then it is weakly convergent to P
and so, by (i), P is a projection with R(P) =N —T) and T = I + L with respect
to 3 = R(P)+R(I—P), where L is weakly stable. However, the strong convergence
of {T™}52, implies the strong convergence of {L"}52 ,, which ultimately, due to
the uniqueness of limit, gives the strong stability of L. This proves (i) for strong
topology. Similar arguments can be used to prove statements (ii) and (iii) in the

case of strong topology. This completes the proof. O

Remark 3.3. Tt is a matter of routine to verify that statements (i) and (ii) of
Theorem 3.2 are equivalent to (i’) and (ii’), respectively, where

(i") if {T™}5°; converges weakly (strongly, in norm) to P € B(J(), then P is a

projection with R(P) = N(I —T') such that TP = PT and T'|z(;_ p) is weakly
(strongly, uniformly) stable,
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(ii") if P € B(%) is a projection with R(P) = N(I — T) such that TP = PT and
T|g(r—py is weakly (strongly, uniformly) stable, then {T™}3°; converges
weakly (strongly, in norm) to P. &

Corollary 3.4. Let T € B(H). Then {T™}52; converges weakly (strongly, in norm)
to P € B(H) if and only if T is similar to an operator R € B(X) with the property
that {R"™}2° , converges weakly (strongly, in nmorm) to an orthogonal projection
Q € B(X). If this is the case, then P and Q are similar via the same similarity as
T and R.

Proof. Suppose that {T"}22; converges weakly (strongly, in norm) to P € B(H).
Then by Theorem 3.2(i), P is a projection. Set X = R(P) & R(I — P) (the exterior
orthogonal sum) and define the operator S € B(X,H) by S(z,y) = = + y for
x € R(P) and y € R(I — P). Since P is a projection, we have H = R(P)+R(I — P),
so by the inverse mapping theorem, S is invertible. It is easy to verify that the
operator Q = S~'PS is an orthogonal projection. Set R = S~'T'S. Since the map

B(H) > X — S7'XS € B(X)

is a unital algebra isomorphism which is a weak (strong, norm) homeomorphism,
we see that {R™}5°; converges weakly (strongly, in norm) to @ € B(H). Reversing
the above reasoning completes the proof. O

Remark 3.5. Regarding the recently published [4, Theorem 2.1}, it is worth noting
that the limit operators P and A appearing there are, respectively, the orthogonal
projection of Hy, onto N(I —U) and the idempotent with R(A) = N(I — X). The
first fact is a direct consequence of Lemma 3.1. The second follows immediately
from Theorem 3.2. O

4. ORTHOGONALITY OF LIMIT PROJECTION

In this section, we generalize part (i) of Lemma 3.1 to cover the cases of hyponor-
mal and contractive operators (see Corollaries 4.4 and 4.5, see also Remark 4.6),
as well as operators T" with liminf, . [|[T™] < 1 (see Theorem 4.12; see also Re-
mark 4.13).

In view of Theorem 3.2(i), if the power sequence {T"}%2; of an operator T
converges weakly to P, then P is a projection. On the other hand, by Corollary 3.4,
such a T is similar to an operator whose power sequence is weakly convergent to an
orthogonal projection. It is therefore of interest to answer the question of when the
weak limit of power sequence is an orthogonal projection. We will begin with the
following general observation that will shed more light on the answer to the above
question.

Proposition 4.1. Let T € B(H). Then the following conditions are equivalent:
(i) N(I = T) reduces T,
(ii) T*|n(r—7) is the identity operator,
(iii) T™|n(r—1) s an isometry,
(iv) NI —=T) CN( —T%).
Proof. First, observe that
Ini-1) = (TIni-1))" = QT N -1y, (4.1)
where Q € B(H) is the orthogonal projection of 3 onto N(I —T').
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(i)=(ii) This is a direct consequence of (4.1).

(ii)=>(iii) Trivial.

(iii)=(i) Note that
el = @l < I7*2 P flall, @ e NI -1T).

Hence [|QT™*z|| = ||T*z|| for every x € N(I — T'). This implies that N(I — T') is

invariant for 7%, and thus N(I — T") reduces T'.

The equivalence (ii)<(iv) is obvious. O
The general answer to our question is as follows.

Theorem 4.2. Suppose that T, P € B(H) and T™ - P as n — oo. Then the
following statements are equivalent :

(i) P is an orthogonal projection,
(i) NI =T)=N(I —-T%),
(iii) N(I = T) reduces T.
If (i) holds, then P is the orthogonal projection of H onto N(I —T).

Proof. (i)=-(ii) Suppose that P is an orthogonal projection. Using the fact that

the adjoint operation on B(H) is weakly continuous, we see that T*" —— P* as
n — o0o. Since P = P*, we deduce from Theorem 3.2(i) applied to 7" and T™* that

NI-T)=R(P)=R(P*)=N{I-T").
(ii)=-(iii) This implication is obvious.
(iii)=-(i) By (iii), T decomposes as
T=IoL (4.2)

with respect to the orthogonal decomposition 3 = N(I — T) & N(I — T)*. Since
{T™}¢° , is weakly convergent, we infer from (2.4) and (4.2) that {L"}$°, is also
weakly convergent. Noting that N(I — L) = {0}, we deduce from Theorem 3.2(iii)
that L is weakly stable. Using (4.2) again, we conclude that {T"}72, converges

weakly to I & 0, which is the orthogonal projection of H onto N(I —T). |

It is worth mentioning that implication (ii)=>(iii) of Theorem 4.2 is valid for any
Hilbert space operator T regardless of whether the sequence {T"}2° , is weakly con-
vergent or not (see also Proposition 4.1). The proofs of the remaining implications
(i)=(ii) and (iii)=(i) appeal to Theorem 3.2.

With & denoting proper inclusion, we obtain the following result, which is a
direct consequence of Proposition 4.1 and Theorem 4.2.

Corollary 4.3. If T € B(H) is such that N(I —T) & N(I —T*), then N(I —T)
reduces T and the power sequence {T™}2° 1 is not weakly convergent to an orthog-
onal projection, and thus T is not weakly stable.

An explicit example of an operator T' € B(H) for which N(I —T) reduces T, but
NI —T) & N(I —T%), is given in Example 4.7.

According to Theorem 4.2, if the power sequence {T"}2° , of an operator T
converges weakly to P, then the requirement that N(I — T") reduces T' is necessary

and sufficient for P to be an orthogonal projection. Under this assumption, the
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weak convergence of the power sequence {T™}52 , is completely determined by the
weak stability of L, where L is as in (4.2).

Corollary 4.4. Let T € B(H) be an operator such that N(I —T') reduces T and let
T'=I¢L
be the orthogonal decomposition of T with respect to the decomposition
H=NI-T)esNI-T)*.

Then the power sequence {T™}5°  is weakly (strongly, norm) convergent if and only
if L is weakly (strongly, uniformly) stable, and if this is the case, then the weak
(strong, norm) limit of {T™}3° , is the orthogonal projection of 3 onto N(I —T)
and N(I =T)=NI —-T%).

Proof. As in the proof of implication (iii)=-(i) of Theorem 4.2, we see that if the
power sequence {T7}52, is weakly (strongly, norm) convergent, then L is weakly
(strongly, uniformly) stable. The converse implication is obvious. It follows from
Theorem 4.2 that the weak (strong, norm) limit of {7"}72, is the orthogonal
projection of H onto N(I —T). O

Corollary 4.5. Let T'€ B(3) be a hyponormal (resp., contractive) operator. Then

(i) N(I = T) reduces T and T decomposes as T = I & L with respect to the
orthogonal decomposition H = N(I—-T)®&N(I—T)*, where L is a hyponormal
(resp., contractive) operator on N(I —T)*,

(i) {T"}22 is weakly (strongly, norm) convergent if and only if L is weakly
(strongly, uniformly) stable, and if this is the case, then the weak (strong,
norm) limit of {T™}2° , is the orthogonal projection of I onto N(I —T)
and N(I —=T) =N —-T%).

Proof. If T is hyponormal, then the restriction of T' to its invariant subspace is
hyponormal and N(I —T) C N(I — T*) (see [6, Proposition 11.4.4]), so N(I —T)
reduces T. In turn, if T is contractive, then by [35, Proposition 1.3.1], N(I — T') =
NI —T*), so N(I —T) reduces T. Now we can apply Corollary 4.4. |

For an operator T' € B(H) reduced by N(I — T'), the restriction of T' to N(I — T')
is called the identity part of T. By Corollary 4.5, we get the following.
A hyponormal or a contractive operator with no identity part is weakly

(strongly, uniformly) stable if and only if its power sequence converges
weakly (strongly, in norm).

Remark 4.6. There are more classes of Hilbert space operators T' for which the
eigenspace N(I — T') reduces T. For instance, this is the case for operators having
the property that N(al — T) C N(al — T*) for every a € C. This property,
in turn, is possessed by so-called dominant operators, i.e., operators T such that
R(adl —T) C R(@l —T*) for every a € C (see [33]). Let us mention that the class
of dominant operators on an infinite dimensional Hilbert space is essentially larger
than the class of hyponormal operators. For the discussion of the case of numerical
contractions, i.e., operators T with w(T") < 1 (less restrictive than ||T'|| < 1), we
refer the reader to Remark 4.13.

Example 4.7. Let H be an infinite-dimensional separable Hilbert space and let
{en}22, be an orthonormal basis of H. Take a bounded sequence {\,}5°, of
positive real numbers. Then there exists a unique operator T' € B(H), called a
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weighted shift (with weights {\,,}22 ), such that Te,, = A, e, 1 for all integers n >
0. Assume that the sequence {\,}32 is monotonically increasing to Ao € (1,00).
Then the weighted shift T is hyponormal (see [30, p. 83, Lemmal). Tt is well known
that the point spectrum of T is empty (see [30, Theorem 8(i)]), so N(I —T) = {0}
reduces T. Tt follows from [32, Theorem 1] that the point spectrum of T* is equal
to {z € C: |z| < Ao }. Since Ao > 1, we see that 1 is in the point spectrum of T*.
Hence, N(I —T) & N(I — T*), thus by Corollary 4.3 the power sequence {T"}5°,
is not weakly convergent to an orthogonal projection and so T is not weakly stable.
Using [32, Theorem 5] and the fact that subnormal operators are hyponormal, we
can modify the weights {\,}5% of T so that T is not only hyponormal, but also
subnormal (see also [30, Proposition 25]). Finally, by considering the operator I &T
with the above T', we obtain an operator S with the property that N(I —.5) reduces
S, N(I —5)#{0} and N(I — S) & N(I — S%). O

In Theorem 4.12 below, we will continue the discussion of the question of when
the weak limit of the power sequence of an operator T is an orthogonal projection.
We will give a sufficient condition for this, assuming that liminf,, o ||77| < 1 (see
also Remark 4.13). Before stating the result, we show that the new assumption is
closely related to the spectral radius of 1" and to the uniform stability of T. For the
reader’s convenience, we sketch the proof of the equivalence of conditions (i)-(iv)
below (cf. the proof of [22, Theorem 3]).

Lemma 4.8. Suppose that T € B(H). Then the following conditions are equivalent:
(i) T is uniformly stable,
(i) liminf,_ ||T7] < 1,
(iii) inf,>k [|[T™| < 1 for some integer k > 1,
(iv) r(T) < 1.
Moreover, if liminf,, .o [|[T"|| = 1, then r(T) = 1.
Proof. The implications (i)=-(ii) and (ii)=-(iii) are trivial.
(iii)=>(iv) Since inf,,> || T™|| < 1, there exists an integer £ > k such that || 7| < 1.
Then, by the spectral radius formula (see [29, Theorem 10.13]), we get

P(T) = inf TV < T < 0,

(i)<(iv) This equivalence is well known (see [18, p. 10]).

Assume that liminf,, . [|T™| = 1. Then there exists a subsequence {|/T%" ||},
tending to 1. Since lim, o a, = 1 implies that lim, ai/e" = 1 for any sequence

{an}22 ;| of positive real numbers and any sequence {£,}5°; of positive integers
tending to oo, we deduce that lim,_o |75 |/ = 1. Applying this to £, = ky,
and using the spectral radius formula, we see that

r(T) = lim ||T"|"/™ = lim ||T*"

Vkn — q.

This completes the proof. O

Corollary 4.9. If T € B(H), then the following conditions are equivalent:
(i) liminf,—o ||T™| < 1,
(ii) either T is uniformly stable or liminf, . |T"| = 1.
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As shown in an example below, the converse of the implication
liminf |T"|| =1 = r(T) =1
n—oo
appearing in the “moreover” part of Lemma 4.8 does not hold in general.

Example 4.10. Let T € B(H) be a 2-isometry on a Hilbert space 3, that is,
I —2T*T + T*2T? = 0. It follows from [14, Proposition 4.5] that there exists a
positive operator C' € B(H) such that

T**T™ = I 4+ nC for all integers n > 0. (4.3)

Using the spectral radius formula, we deduce that r(7') = 1 (in fact, this is a
consequence of a more general fact, see [1, Lemma 1.21]). Assume that T is not an
isometry, that is, C' # 0. Then, by (4.3), lim, . [|T™| = co. To have an example of
a non-isometric 2-isometry, consider the weighted shift 7' with weights {0, (\)}22,
defined by

itz -1)
on()\)—\/ e 20

where A € (1,00) (see, e.g., [15, Lemma 6.1]; see also [31, Example 2.7]). O
Next, we need the following characterization of orthogonal projections.

Lemma 4.11 ([11, Lemma]). Let H be a Hilbert space and P € B(3{) be an idem-
potent. Then the following conditions are equivalent:

(i) P is an orthogonal projection,
(ii) |[(Pxz,x)| < ||=||? for all € 3, or, equivalently, w(P) < 1.

Now we provide yet another criterion for the limit of a weakly convergent power
sequence of an operator to be an orthogonal projection.

Theorem 4.12. Suppose that T, P € B(H) are such that T~ P as n — oo and
lim inf {77 < 1. (4.4)
Then P is the orthogonal projection of H onto N(I —T), N(I —T) reduces T, and
NUI-T)=N(I-T%*).
Proof. By Theorem 3.2(i), P = P? and R(P) = N(I — T). Since
(P )] = lim_ |(T", 23] < liminf |77 2] < 2, = € 9,

we deduce from Lemma 4.11 that P is the orthogonal projection of H onto N(I —T).
The remaining part of the conclusion is a direct consequence of Theorem 4.2. [

Remark 4.13. Arguing as in the above proof, we see that Theorem 4.12 remains
valid if the assumption (4.4) is replaced by

liminf |T"z| < |z||, = €3 (4.5)

Repeating the above reasoning again, we deduce that Theorem 4.12 is also true if
the assumption (4.4) is replaced by

lim inf w(T™) < 1. (4.6)

n—oo
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In turn, using the Berger inequality w(T™) < w(T')™, which holds for all nonnegative
integers n (see [13, Problem 221]), we conclude that the inequality

w(T) < 1 (4.7)

implies (4.6), which gives yet another version of Theorem 4.12. It is obvious that
(4.4) implies both (4.5) and (4.6). Note also that any contraction T satisfies con-
ditions (4.4)-(4.7), and that for any T with w(T) < 1, N(I — T') reduces T and
NI —T) = N(I —T*) (the second fact is well known, although not easy to find
in the literature; see Appendix for the proof). Therefore, it is an open question
which of the conditions (4.4)-(4.6) implies that the space N(I —T') reduces T or/and
NI -T)=NI-T%). &

We conclude this section by showing that for every @ € (1,00], there exists an
operator T' € B(3() such that

liminf ||7"|| = 1 (so T is not uniformly stable), (4.8)
limsup ||T"]| = ¥ (so T is not a contraction), (4.9)
T is weakly stable if and only if ¥ < oco. (4.10)

Certainly, by (4.8) and the moreover part of Lemma 4.8, r(T') = 1 regardless of
whether ¥ is finite or not.

Example 4.14. Let T € B(H) be a weighted shift with positive real weights
{An 52 relative to the orthonormal basis {e,}5> 4 of H (see Example 4.7). Then

Tken - )‘n o ')‘nJrk—lenJrka k > 17 n > Oa (411)
Il = sup A Angim, k> 1. (4.12)

Let {gn}22, be a strictly decreasing sequence of positive real numbers such that
lim, o g, = 1. To determine the weights that meet our requirements, we will
use the inflation method, which amounts to constructing the sequences {z; };’i],
{t;}152, and {l;}52, of integers greater than 2 such that
j—1
ty=s;xj, I >my;=t;+ Z(t2 +1) and zjp1 > my;+ 1 forallj>1, (4.13)
i=1
with convention Z?:1 & = 0, where {s;}5°, is an arbitrary sequence of integers
greater than 2 (later in the proof, a condition will be imposed on the {s;}%2,).
Namely, using induction, we can construct a sequence of finite segments P; and
Q;, j = 1, of the form

segment P; segment Q;

g, ——N————
7R UUURIS 10705 FUURNS IR/ 18 VOUPIS 10705 UPRIS 10" recl IRURUURPNINS 1, (4.14)
~—_—
zj zj zj z; Lj
tj=s;x;

arranged in the order Py, Q1,Pa, Qs,... ,Pn, Qn, ..., where the length of the j-th
segment P; is t; and the length the j-th segment Q; is [;; the j-th segment P; itself
is partitioned into s; — 1 segments of the form g;,1,...,1, each of length z;, plus

S

a single segment of the form g¢;,1,...,1,¢; ™ of the same length z;; finally, the
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segment Q; consists of [; units 1. Having done this, we define the weights {\,}2%
of the weighted shift T via concatenation of the (finite) sequences Py, Q1, P2, Qo, ...
as follows

)\Oa )‘15 )‘27 el = Pla QlaPQa QQa cee apna Qna e (415)
By (4.13), we have
Tj41 > m; > tj = 5;%; > zj, ] > 1. (416)

The number of occurrences of ¢; in the j-th segment P; is equal to s; (the expression
qj_sj is not counted). First, we prove that liminf, . ||T"] = 1. Since {¢,}22, is
decreasing, we deduce from (4.12)-(4.16) that

. gji+1  ifm; <n<my+1; with j > 1,
T =9 s . o (4.17)
q;’ ifm; —z; +1 <n<m; with j > 1,
and
g; < T < q;’j ifm; —t;+1<n<m;—x;+1with j > 1. (4.18)
By (4.17), (4.18) and the fact that ¢; \, 1 as j — oo, we have
liminf |T"|| = lim ¢; =1 and limsup||T"] = limsupq;j. (4.19)
n—oo J—0o0 n—oo j—o00

In particular, this proves (4.8). Write g; as ¢; = €% with ¢; = log ¢;. Then {g,,}72,
is a strictly decreasing sequence of positive real numbers such that lim,_, €, = 0.
Assume that {s;}32, is strictly increasing. Then lim;_, s; = co. We show that for
every ¥ € (1,00], there exists {£;}3° such that lim; . s;&; = log . For, consider

two cases. If ¥ = oo, then we set g; = \/LS_] for j > 1. In turn, if ¥ € (1, 00), then we

set £; = 5% for j > 1. Since q;" = %%, we deduce from (4.19) that (4.9) holds.

Si

As weak stability always implies uniform boundedness, which by (4.9) is equiv-
alent to ¥ < oo, it remains to prove that T is weakly stable provided ¥ < oo.
Using (4.11), we see that lim, o (T"ex,e;) = 0 for all integers k,I > 0. Hence,
limy,— oo (T™z,y) = 0 for all z,y € X, where X stands for the linear span of {e,, }2° .
Assume that ¢ < oo. Since X is dense in I and, by (4.9), sup,,>, [|[T"| < oo, we
conclude that T' is weakly stable (see e.g., [21, Lemma 1]), that is (4.10) holds. ¢

Theorem 4.12 and Corollary 4.5 naturally hold for unitary operators. Outgrowths
of such a particularisation to unitary operators are the subject of the next section.

5. WEAK CONVERGENCE OF POWER SEQUENCES OF UNITARY OPERATORS

Take a unitary operator U € B(J{) on a Hilbert space H. Since U is hyponormal,
N(I —U) reduces U, so U decomposes relative to H = N(I —U) @ N(I — U)* as
U = 1o W, where W is unitary on N(I — U)* (any part of the decomposition of
U may be absent). Thus, by Corollary 4.5 we obtain the following.

Proposition 5.1 ([4, Corollary 3.7]). Let U € B(H) be a unitary operator on a
Hilbert space H. Then N(I—-U) reduces U and U decomposes as the orthogonal sum

U=IaW

relative to the orthogonal decomposition H = N(I —U) & N(I — U)*, where W is
a unitary operator on N(I — U)*. Moreover, {U™}>°_; is weakly convergent if and
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only if W is weakly stable, and if this is the case, then the weak limit of {U™}22
is the orthogonal projection of H onto N(I —U).

Note that the power sequences {U™}52; and {W"}52; may not coverage at all;

for example, this is the case if U is a symmetry (i.e., a unitary involution) such as

U= B _OJ =1&(-1).

According to Proposition 5.1, the following holds.

The power sequence of a unitary operator with no identity part
is weakly convergent if and only if it is weakly stable.

The weak stability of a unitary operator U can be completely characterized by
the requirement that the spectral measure of U is Rajchman (see Corollary 6.2; see
also (5.3)). Let us also note that, since unitary operators are clearly not strongly
stable (and therefore not uniformly stable), it follows from Corollary 4.5 that the
only unitary operator whose power sequence is strongly or norm convergent is the
identity operator.

Let A and p be o-finite measures on the o-algebra At of Borel subsets of the unit
circle T centered at the origin of the complex plane C. The Lebesgue decomposition
theorem implies that the measure p has a unique decomposition p = p, + s rela-
tive to A\, where u, and ps are measures on At that are absolutely continuous and
singular relative to A, respectively. In turn, the measure us has a unique decomposi-
tion s = fhse + fhsd, Where uge and psq are measures on At that are continuous and
discrete (i.e., pure point), respectively (cf. [28, Theorem 1.13]). Call the measures
tse and g singular-continuous and singular-discrete relative to A, respectively (cf.
[19, Proposition 7.13]).

A unitary operator is absolutely continuous, singular-continuous, or singular-
discrete if its spectral measure is absolutely continuous, singular-continuous, or
singular-discrete relative to the normalized Lebesgue measure on Ar, respectively.
By the spectral theorem, every unitary operator U € B(H) on a Hilbert space H
decomposes as the orthogonal sum

U=U, ®Us @ Usq (5.1)

of unitary operators relative to the orthogonal decomposition 3 = I, & I, & IHsq
of Hilbert spaces, where U, € B(H,) is absolutely continuous, Us. € B(Hs.) is
singular-continuous and Uy € B(JHs4) is singular-discrete. Note that any part in
the decomposition (5.1) may be absent.

The weak stability of unitary operators can be characterised in terms of the
decomposition (5.1) as follows.

Remark 5.2. Consider the decomposition (5.1) of a unitary operator U € B(H)
relative to the decomposition H = I, & I, & Fs4. The following facts are well
known (see, e.g., [20, p. 48]).

(i) An absolutely continuous unitary is always weakly stable, i.e., U = 0.

(ii) A singular-discrete unitary is never weakly stable, i.e., U, == 0.

This in turn is equivalent to the following statement.
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A unitary operator is weakly stable if and only if its singular-continuous (5.2)
part is weakly stable and its singular-discrete part is absent. :

Recall also the following two observations from [20, Propositions 3.2 and 3.3].
(iii) There exist weakly stable singular-continuous unitary operators.

(iv) There exist weakly unstable singular-continuous unitary operators.

Now, we provide more details.

(i) Absolutely continuous unitaries as parts of bilateral shifts. A unitary operator
is absolutely continuous if and only if it is a part of a bilateral shift (see [9, p. 56,
Exercise 8]).

(ii") Singular-discrete unitaries via eigenvalues. A complex number « is an eigen-
value of a unitary operator U with the spectral measure E if and only if E({a}) # 0
(see [29, Theorem 12.29]). Hence, U has no singular-discrete (equivalently, discrete)
part if and only if it has an eigenvalue.

(ii”) Weakly unstable singular-discrete unitaries with full spectrum. If {oy }2° ; is an
enumeration of the rationals in [0, 1), then the diagonal operator U with diagonal
{e*mier} | on (2 is a singular-discrete unitary whose spectrum is the whole unit
circle T, and which is not weakly stable according to (ii) (see also [7, Example 13.5]).

(iii") Weakly stable singular-continuous unitaries. Let p be a finite measure on Ar
and let L2(T, 1) be the Hilbert space of square integrable Borel complex functions
on T with respect to p. Consider the unitary multiplication operator U, , on
L?(T, u), which is defined by

Uguh = -9 ae. [, €L2(T7N)a

where ¢: T — T is the identity map. Note that the measure y can be regarded
as the scalar spectral measure of U, ,. Recall that a finite measure v on Ar is a
Rajchman measure if [} 2" dv(z) — 0 as |k| — oo (equivalently as k — 00). For the
operator U, ,, we have

p is a Rajchman measure if and only if Uy , — 0. (5.3)

(Indeed, UZ , == 0 = (UZ ,1,1) = 0 <= [ z"du(z) » 0 = U} , == 0; the
proof of the last implication is straightforward (cf. [2, pp. 1383/1384]). A Rajchman
measure i always continuous (see [27], see also [24, p. 364]); however there are
singular Rajchman measures [24, Theorem 3.4]. Thus a singular Rajchman measure

is singular-continuous, so, by (5.3), we have

if w is a singular Rajchman measure, then the multiplication operator U, ,
on L*(T,p) is a weakly stable singular-continuous unitary.

(iv’) Weakly unstable singular-continuous unitaries. Let p be the Borel-Stieltjes
measure on At generated by the Cantor function associated with the Cantor
set I' over the unit circle T (cf. [28, p. 20, Example 3] and [19, p. 128, Prob-
lem 7.15(c)]). Then p is singular-continuous, and thus the multiplication operator
Uy, on L?(T,u) is a singular-continuous unitary whose spectrum is I", but yu is
not a Rajchman measure (see [24, p. 364]), so by (5.3), the operator U, , is not
weakly stable. &

Now, we apply Proposition 5.1 to the decomposition (5.1) of a unitary operator
U and conclude that the power sequence {U™}2° ; is weakly convergent if and only
if its singular-continuous part Uy, is weakly stable and Usq = I (see Theorem 5.5).
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Lemma 5.3. The power sequence of a singular-continuous unitary operator U con-
verges weakly if and only if U is weakly stable.

Proof. Only the necessity part requires proof. Decompose U as in Proposition 5.1,
that is U = I & W. Since U is singular-continuous, U has no eigenvalue (see Re-
mark 5.2(ii’)), and thus U = W. Using the “moreover” part of Proposition 5.1
completes the proof. O

Lemma 5.4. The power sequence of a singular-discrete unitary operator U con-
verges weakly if and only if U is the identity operator.

Proof. As above, we only discuss the necessity part. Decompose U as in Proposi-
tion 5.1. Since U is singular-discrete, so is W. Therefore, by the “moreover” part of
Proposition 5.1 and Remark 5.2(ii), U = I. O

Theorem 5.5. Let U be a unitary operator on a Hilbert space H and let U =
Uy ® Use ® Usq be the decomposition as in (5.1). Then {U"}22 is weakly conver-
gent if and only if Us. is weakly stable and Usq is the identity operator (any of U,
Use, and Usq may be absent). Moreover, if this is the case, then the weak limit of
{U™}S2, is the orthogonal projection of H onto N(I —U) = Hsg.

o

Proof. By (2.4), {U™}$, converges weakly if and only if every sequence {U?}2 ,,
{UZ}>2,, and {Ul,}52, converges weakly. It follows from Remark 5.2(i) that
UM 250 as n — oo. Now, using Lemmas 5.3 and 5.4, we can prove the “if and
only if” part. The “moreover” part follows from the “if and only if” part and

Proposition 5.1. O

Observe that Theorem 5.5 extends the weak stability criterion (5.2).

6. THE CASE OF SUBNORMAL OPERATORS

In this section, we characterize the weak, strong and uniform stability of sub-
normal operators in terms of their semispectral measures. As a consequence, we
obtain results on the convergence of the power sequence of a subnormal operator
with respect to the weak, strong and norm topologies.

We begin by reviewing the concepts of the semispectral integral and the semispec-
tral measure of a subnormal operator. Suppose that F': Ay — B(%) is a semispec-
tral measure on a o-algebra A of subsets of a set {2, i.e., u; = (F(:)z, x) is a positive
measure for every z € 3, and F(£2) = I. Also recall that if ¢ € (", cq¢ L' (12, pta),
then there exists a unique operator in B(J(), denoted by [, ¢(w) F(dw), such that

([ o F@a) = [ pir@iee. s @1

o)
The same applies to positive operator valued measures.

If T € B(3{) is a subnormal operator and E is the spectral measure of a minimal
normal extension N € B(X) of T, then the Borel semispectral measure F' on C
with values in B(J() defined by

F(A) = PycE(A)|gc, A-Borel subset of C, (6.2)

where Py € B(X) is the orthogonal projection of KX onto 3, is called the semis-
pectral measure of T. The definition of F' is independent of the choice of a minimal



16 Z.J. JABLONSKI, I.B. JUNG, C.S. KUBRUSLY, AND J. STOCHEL

normal extension of 7" and F is a unique representing semispectral measure of the
operator valued complex moment sequence {T*"T™}2° _,, i.e.,

7™ = / zMmzZ"F(dz), m,n>0. (6.3)
c

The closed support of F is equal to o(N). See [34, Appendix| and [17, Section 3]
(see also [3, 6]) for more information.

If F is a B(H)-valued Borel semispectral measure on C, then Fr denotes the
positive operator-valued measure defined as Fr(A) = F(ANT) for any Borel subset
of C.

We begin by discussing the weak stability of subnormal operators.

Proposition 6.1. Let T € B(H) be a subnormal operator with the semispectral
measure F. Then T is weakly stable if and only if |T) < 1 and (Fr(-)x,z) is a
Rajchman measure for every x € I, that is,
lim | z"(F(dz)z,z) =0, x¢€XH. (6.4)
n—oo T
Proof. Tf T is weakly stable, then by (2.2) and (2.3), ||T'|| < 1. Hence, o(T) C DUT
and thus, by (6.1) and (6.3), the following identity holds

(T"z,z) = /]DJ 2"(F(dz)z,z) + /11' 2" (F(dz)z,z), €3, n=0. (6.5)

By the Lebesgue dominated convergence theorem, the first summand in (6.5) tends
to zero as n — o0o. Therefore, T is weakly stable if and only if (6.4) holds. |

The following result is a direct consequence of Proposition 6.1 and the obvious
observation that semispectral measures of normal (and therefore unitary) operators
are spectral. It can also be derived from (5.3) and two facts, the first of which says
that any unitary operator is an orthogonal sum (of arbitrary cardinality) of unitary
multiplication operators, as in Remark 5.2(iii’), and the second states that a finite
Borel measure on T, which is the sum of a series of any (not necessarily countable)
family of Rajchman measures, is a Rajchman measure.

Corollary 6.2. A unitary operator U € B(H) with the spectral measure E is
weakly stable if and only if (E(-)x,x) is a Rajchman measure for every x € 3.

Since absolutely continuous measures with respect to the normalized Lebesgue
measure on At are Rajchman measures (see [24, p. 364]), we get

Corollary 6.3. Let T € B(H) be a subnormal contraction with the semispectral
measureF. If Fr is absolutely continuous with respect to the normalized Lebesgue
measure on Ar, then T is weakly stable. In particular, this is the case if Fr = 0.

Using Corollary 4.5 and Proposition 6.1 (see also (2.4)), we can characterize the
weak convergence of the power sequence of a subnormal operator as follows.

Proposition 6.4. LetT € B(J() be a subnormal operator. Then {T"}0%, is weakly
convergent if and only if T decomposes asT = I & L with respect to a decomposition
H = 31 &I s, where L is a subnormal contraction with the semispectral measure G
such that (Gt (-)z,x) is a Rajchman measure for every x € Hy. If this is the case,
then the weak limit of {T™}2° , is the orthogonal projection of 3 onto N(I —T).

Moreover, the orthogonal decomposition of T is unique and H, =N —T).
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As for the strong stability of subnormal operators, we have the following result.

Proposition 6.5 ([16, Proposition 4.2(ii)]). Let T € B(H) be a subnormal opera-
tor with the semispectral measure F. Then T is strongly stable if and only if ||T'|| < 1
and F(T) =0, or equivalently, if and only if T is power bounded and F(T) = 0.

It turns out that weakly stable normal operators are simply orthogonal sums of
weakly stable unitary operators and strongly stable normal operators. In fact, as
the proof of Corollary 6.6 shows, any normal contraction 1" has the form T'=U &S,
where U is unitary and S is a strongly stable subnormal contraction. This kind of
orthogonal decompositions for a class of contractions, covering the case of normal
operators, can be found in [23].

Corollary 6.6. A normal operator T € B(H) is weakly stable if and only if T =
UaS, where U is a weakly stable unitary operator and S is a strongly stable normal
operator.

Proof. First, observe that the semispectral measure F of T is the spectral measure
of T. Suppose that T is weakly stable. According to Proposition 6.1, ||T'|| < 1 and

(Er(-)z,z) is a Rajchman measure for every x € J. (6.6)

By [3, Theorem 6.6.3], the spaces M = R(E(T)) and N = R(E(D)) reduce T, H =
MeNand T =U & S, where U = T and S = T|n. Clearly, U is unitary (see
[3, Theorem 6.1.2]) and S is a normal contraction. Tt is easy to see that Er is the
spectral measure of U and the measure Fp defined by Ep(A) = E(AN D) for any
Borel subset A of C is the spectral measure of S. Hence, by (6.6) and Corollary 6.2,
U is weakly stable. Since Ep(T) = 0, we deduce from Proposition 6.5 that S is
strongly stable. In view of (2.4), the converse implication is obvious. O

Before we deal with the strong convergence of power sequences of subnormal
operators, we prove the following

Lemma 6.7. Let F be a B(H)-valued Borel semispectral measure on C. Then

{/ Z”F(dz)} converges strongly to 0. (6.7)
D

n=1

Proof. By Naimark’s dilation theorem (see [26] and [25, Theorem 6.4])), there exist
a Hilbert space X and a spectral measure E: Ac¢ — B(X) such that 3 C X and

<F(A)I,y> = <E(A)£E,y>, T,y € :}Ca Ac ACa

where A¢ stands for the o-algebra of all Borel subsets of C. This, together with
(6.1), implies that

‘</D F(d2)z y )/ E(d2)z,y ‘
- )< /D Z"E(dz)x,y>)
<|| [ e v

1/2
= ([P p@ea) Vvl sy et nzo,
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As a consequence, we have

H/Dz"F(dz)a:H < (/D \z|2”<F(dz)x,x>)]/2, zeH, n>0.

By the Lebesgue dominated convergence theorem, [j[z[*"(F(dz)z,z) — 0 as
n — 00, so (6.7) holds. O

Now we can characterize the strong convergence of power sequences of subnormal
operators.

Theorem 6.8. Let T' € B(J() be a subnormal operator with the semispectral mea-
sure F. Then the following conditions are equivalent:

(i) {T™}S2, is strongly convergent,

(ii) T decomposes as T =1 & L with respect to a decomposition H = Hy & Hao,
where L is a subnormal contraction whose semispectral measure vanishes
on T,

(iii) T is a contraction and
F(A) =6,(A)F(T) for every Borel subset A of T, (6.8)
where 01 1s the Dirac measure at 1.

Moreover, if (i) holds, then F(T) is the orthogonal projection of H onto N(I —T')
and the strong limit of {T™}5° , is equal to F(T). Furthermore, the orthogonal
decomposition of T in (ii) is unique and H, =N —T).

Proof. There is no loss of generality in assuming that ||7']] < 1 (see the proof of
Proposition 6.1).

(i)=(ii) Tt follows from Corollary 4.5 that T" decomposes as T = I & L with
respect to the orthogonal decomposition H = N(I — T) & N(I — 1)+, where L
is a subnormal contraction. Hence, if {T™}52, is strongly convergent, then by
Corollary 4.5, L is strongly stable. Now we can apply Proposition 6.5 to get (ii).

(ii)=(iii) Denote by G the semispectral measure of L. Then (see [4, Lemma 3.1])
F(A)=6(A) & G(A), A-Borel subset ofC. (6.9)

Substituting A = T and using G(T) = 0, we get F(T) = I & 0. Since G(T) =0
implies that G(A) = 0 for every Borel subset A of T, we see that (6.9) implies (6.8),
so (iii) holds. According to Proposition 6.5, the subnormal contraction L is strongly
stable, so {T™}52; converges strongly to I & 0. In turn, by Corollary 4.5, I &0 =
F(T) is the orthogonal projection of H onto N(I —T). This implies that H; =
N(I —T), and consequently shows that the orthogonal decomposition of T" in (ii) is
unique. In summary, we have proven both the “moreover” and “furthermore” parts.

(iii)=-(i) Tt follows from the inclusion ¢(T) C D U T that
7 (43 / z"F(dz) —|—/ z"F(dz)
D T
(6.8)
& /Z"F(dz) LF(T), n>o0. (6.10)
D

Therefore, by Lemma 6.7, {T™}5° ; converges strongly to F(T). O
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Remark 6.9. Tt is possible to prove the implication (iii)=>(ii) of Theorem 6.8
directly without using Lemma 6.7. We are still assuming that [|T]| < 1. Let T' = I&L
be the orthogonal decomposition of T' as in Corollary 4.5. According to (6.10),
we have

" = / "F(dz) + F(T), n>0. (6.11)
D

It follows from (6.1) and the Lebesgue dominated convergence theorem that the

sequence { [, 2" F (dz)}:oﬂ converges weakly to 0 as n — oo (this is less than what

is postulated in (6.7)). Hence, by (6.11), the power sequence {T™}2_, of T converges
weakly to F(T). In view of Corollary 4.5, F(T) is the orthogonal projection of H
onto N(I —T). Let G be the semispectral measure of L. Then

(6:8) (69)

0"="F(T\{1}) ="0&G(T\{1}),

so Gr(A) =61 (A)G({1}) for all Borel subsets A of T. However, by Proposition 6.4,
(Gt (-)x,x) is a Rajchman measure for every x € H, so (G(T)z,z) = 0 for all z € H
or, equivalently, G(T) = 0. This yields (ii). O

In the last part of the paper, we will focus on the uniform stability and the
associated norm convergence of power sequences of subnormal operators. It follows
from (2.1) and (2.3) that

a subnormal operator is uniformly stable if and only if (6.12)
1t s a strict contraction. N

First, we show that the uniform stability of subnormal operators can be character-
ized in terms of strong stability as follows.
Theorem 6.10. Let T € B(H) be a subnormal operator with the semispectral meas-
ure F. Then the following statements are equivalent:

(i) T is uniformly stable,

(ii) T is strongly stable and [ ﬁ(F(dz)x,:@ < 00 for every x € I,

(iii) r(T) <1, F(T) =0 and [} ﬁ(F(dz)x,x) < oo for every x € 3.
Moreover, if T is uniformly stable, N € B(X) is a minimal normal extension of T
and Ps¢ in B(X) is the orthogonal projection of X onto 3, then |N| <1 and

o

*jg 1 * -
> THTI = /D mF(dz) = Pyc(I — N*N)"Yg, (6.13)
j=0

where the series is morm convergent.

Proof. Let E be the spectral measure of N. Using (2.3) and [6, Corollary 11.2.17],
we deduce that

0 :=|N| =|T| =r(T) and both measures E and F are
supported in {z € C: |z| < 6}. (6.14)
(i)=-(iii) This is a direct consequence of (6.12).
(ii))=(i) By (6.14), T*T < I. Since [} 7=z (F(dz)z,2) < oo for every € It
there exists the semispectral integral R = [} ﬁF(dz) € B(H) (see [34, Theo-
rem A.1]). Tt follows from (iii) that

F(C\ D) =0. (6.15)
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Hence, we have

. 1
(R, z) ‘6:”/ (F(d2)z,z) > ||z]2, « € 9,
p 1—[z[?

and thus Rneq0. Using the Cauchy-Schwarz inequality, (6.1) and (6.3), we obtain

S RLCEEE
D

< (/Da_ |z|2)<F(dz)x,x>>]/2 (/D ]_]7<F(dz)x,x>>]/2

= (I = T*T)z,z)"*(Rx, z)'/?
<N =T 1) 22| R|V? ||, = € IC.

Therefore, we have

/!

1

Iz, =€ 3.

This implies that (I — T*T)"/? is invertible. Thus, 0 ¢ o(I — T*T), or equivalently
1 ¢ o(T*T). Since T*T < I, we conclude that ||T|| < 1. Hence, in view of (6.12),
statement (i) holds.

(ii)<(iii) This equivalence is a direct consequence of Proposition 6.5 and (2.3).

It remains to prove the “moreover” part. Assume that 7" is uniformly stable. By
(6.12), ||IT|| < 1, so the series Z;io T*T7 is norm convergent. Using (6.3), we get

<<§:OT*J'TJ'>;,;,;,;> :§A|Z2j<F(dz)x,x>
:/D <iz|2j><F(dz)x,x>

. 1
) </D T |Z2F(dz)x,x>,quada¢ € H.

This proves the first equality in (6.13). By (6.14), the operator I — N*N is invert-
ible. Hence, by (6.1), (6.2), (6.14) and the Stone-von Neumann calculus, we have

</D ﬁF(dz)x,@ = </D ﬁE(dz)x@

= (I - N*N) 'z z)
— <P%(I—N*N)_1\;Ca:,a:>, r € H.

This proves the second equality in (6.13) and completes the proof. O

Now, we can describe the norm convergence of power sequences of subnormal
operators. The result below is a direct consequence of (6.12) and Corollary 4.5.

Proposition 6.11. Let T € B(H) be a subnormal operator. Then {T™}2, is
norm convergent if and only if T decomposes as T = I & L, where L is a strict
contraction.

We conclude the paper by relating the stability of a subnormal operator to the
stability of its minimal normal extension.
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Theorem 6.12. Let T € B(H)) be a subnormal operator and N € B(X) be a

manimal normal extension of T. Then the following assertions hold:

(i) T is weakly (strongly, uniformly) stable if and only if N is weakly (strongly,
uniformly) stable,
(i) {T"}22 converges weakly (strongly, in norm) if and only if {N™}>2, con-
verges weakly (strongly, in norm),
(iil) if {T™}°, converges weakly (strongly, in norm), then N(I —T) = N(I — N),
T =1& L relative to H =N(I —T) &N —T)* and N = I & M relative to
K =N~ N)BSN( —N)*t, where L and M are weakly (strongly, uniformly)

stable and M is a minimal normal extension of L.

Proof. (i) First, we will address the issue of weak stability. Suppose that T is
weakly stable. Then ||N|| = ||T|| < 1 (see (6.14) and Proposition 6.1). Tt follows
from [6, Proposition II.2.4] that

oo
K =\/ NV (6.16)
j=0

Then for all j,k > 0and n > 1,
(N™(N*z), N**y) = (N TRg Niy) = (T™(T*2), T7y), z,y € IH.

By the weak stability of T', this implies that (N™f, g) — 0asn — oo for all f, g € X,
where X is the linear span of (J;—, N*/3(. Since by (6.16), X is dense in X, and
sup,,>1 [[N"]| < oo, we conclude that N is weakly stable (see e.g., [21, Lemma 1]).
The converse implication is obvious.

The case of strong stability can be considered similarly (see also [16, Propo-
sition 4.2(iii)]). In turn, the case of uniform stability follows from the fact that
7™ = ||[N™|| for all n > 1 (see [6, Corollary 11.2.17]).

(ii) & (iii) Assume that {T7}2° ; converges weakly to P € B(H). Then, by Corol-
lary 4.5, P is an orthogonal projection with R(P) = N(I —T') and T' decomposes
as T'= I & L with respect to the orthogonal decomposition H = R(P) & R(I — P),
where L is a weakly stable subnormal operator. It follows from [5, Lemma 3.4] that
N = I[& M relative to X = R(P)®R(P)*+, where M is a minimal normal extension
of L. By (i), M is weakly stable, so { N}, converges weakly to Q € B(X)), where
@ is the orthogonal projection of K onto R(P) (clearly, @ extends P). Applying
Corollary 4.5 to N in place of T, we conclude that

N(I — N) = R(Q) = R(P) = N(I = T).

The “if” part of (ii) for the weak topology is again obvious. This proves both (ii)
and (iii) in the case of weak topology. A similar argument can be used in the case
of strong and norm topologies. |

APPENDIX A. NUMERICAL CONTRACTIONS

In this appendix we prove the fact announced in Remark 4.13.

Proposition A.1l. Suppose that T € B(H) is such w(T) < 1. Then the eigenspace
N(I —T) reduces T and N(I —T) =N —T%).
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Proof provided by M. Choi. Since w(T™*)=w(T), it suffices to show that N(I —T') C
N(I—T*). Take z € N(I —T) such that ||z|| = 1. Set M =span {z, T*z}. If dim M =
1, then T*z = Az for some A € C, so 1 = (IT™*z, x) = A, which implies z € N(I —T%).
Thus the remaining possibility is that dimM = 2. Then there exists z € M such
that ||z|| = 1, z L z and M = span{z, z}. This implies that T*z = £&x + nz for some
¢&,neC. Hence 1 = (Tz,z) = (T*z,z) =&, so

Tz =z + nz. (A1)

Let P € B(H) be the orthogonal projection of H onto M. Set B = PT|» € B(M).
Then Bx = z and Bz = PTz = ax + [z for some «a,3 € C. Thus B has the
matrix representation B = [(1) ;] relative to the orthonormal basis {z,z} of M.
Since w(B) < w(T) < 1 and (Bz,z) = 1, we have w(B)1. We show that a = 0.
Suppose, to the contrary, that o # 0. If 8 # 1, then it follows from the proof
of [12, Lemma 1.1-1] that the numerical range W (B) of B is the ellipse with foci
1 and 8 and minor axis |a| > 0, so w(B) > 1, a contradiction. This means that
B = 1. Again, by [12], W(B) =1+ {z € C: |2| < J%[}, sol=w(B)>1+ J%[,
which is a contradiction. Summarizing, « = 0. Then Bz = 3z, which implies that
P(Bz—Tz) =0, s0 (Bz—Tz) L x. Therefore we have

0=0(z,z) = (Tz,z) = (2, T"z) (A1)

and consequently by (A.1), T*z = x, or equivalently x € N(I — T*). O
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