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FORMS OF BIISOMETRIC OPERATORS AND
BIORTHOGONALITY

B.P. DUGGAL AND C.S. KUBRUSLY

Dedicated to the memory of our friend and colleague Nhan Levan (1936-2021)

ABSTRACT. The paper proves two results involving a pair (A, B) of P-biisomet-
ric or (m,P)-biisometric Hilbert-space operators for arbitrary positive integer
m and positive operator P. It is shown that if A and B are power bounded and
the pair (A, B) is (m, P)-biisometric for some m, then it is a P-biisometric pair.
The important case when P is invertible is treated in detail. Tt is also shown
that if (A, B) is P-biisometric, then there are biorthogonal sequences with
respect to the inner product (-;-)p = (P-;-) that have a shift-like behaviour
with respect to this inner product.

1. INTRODUCTION

Let (H,{-;-)) be a Hilbert space and let A and B be Hilbert-space operators.
They are said to make a biisometric pair if A*B = I, where [ is the identity
operator. This extends the notion of a Hilbert-space isometry: an operator A is
an isometry if and only if A* A = I. Biisometric pairs have been investigated in [9].
We show here that this is connected to the notion of (m, P)-biisometric pairs and,
in particular, to the notion of P-biisometric pairs, where m is a positive integer and
P is a positive operator.

The original results in this paper are stated and proved in Sections 4, 5 and 6,
viz., Theorems 4.1, 5.1 and 6.1. Let P be a positive operator. In Theorem 4.1 we
show that if (A, B) is an (m, P)-biisometric pair for some m, and A and B are power
bounded, then (A, B) is a P-biisometric pair; so that if in addition P is invertible,
then A and B are similar to a biisometric pair. In Theorem 5.1 we extend the results
in [9], from biisometric pairs to an arbitrary P-biisometric pair, exhibiting a pair
{{on}. {¥n}} of biorthonormal sequences with values in the inner product space
(H,{-;-)p), with inner product (-;-)p = (P-;-), which have a shift-like behaviour.
Theorem 6.1 gives a comprehensive account of the case when the positive operator
P is invertible (with a bounded inverse) for power bounded operators A and B.

All terms and notation used above will be defined in the next section. The paper
is organised as follows. Basic notation and terminology are summarised in Section
2. Forms of biisometric operators, including P-biisometric and (m, P)-biisometric
pairs, are considered in Section 3. Sections 4 and 5 contain the main results of
the paper as discussed above. The particular case when the injective positive P is
invertible (with a bounded inverse) closes the paper in Section 6.

2. Basic NOTATION AND TERMINOLOGY

Throughout this paper (M, (-;-)) stands for a complex Hilbert space, equipped
with an inner product (- ;- ) generating the norm || - ||. Let A: H — H be an operator
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(i.e., a bounded linear transformation) of (H,(-;-)) into itself — referred to as a
Hilbert-space operator, or an operator on H. The normed algebra of all operators
on a normed space X will denoted by B[X], and so B[B[X]] stands for the normed
algebra of all bounded linear transformations of B[X] into itself (sometimes referred
to as transformers). Let I stand for the identity operator and O for the null operator
on any linear space. We use the same notation || - || for the induced uniform norm
on B[X] for any normed space X. An operator A on a normed space X is power
bounded if sup,, ||[A"|| < oo (which means sup,, [|[A"z| < oo for every z € X if X
is a Banach space by the Banach—Steinhaus Theorem). The adjoint of an operator
A on any (complex) Hilbert space ‘H will be denoted by A*. The kernel and range
of an operator A on H will be denoted by N(A) and R(A), where N'(A) is a
subspace (i.e., a closed linear manifold) and R(A) is a linear manifold of (H, (-;-)),
respectively. Recall that R(A)~ = N (A*)*, where the superscripts ~ and *+ stand
for closure and orthogonal complement in a Hilbert space (H,(-;-)), respectively.
A Hilbert-space operator P is self-adjoint if P*= P (equivalently, if (Pz;z) is
real for every x € H). A self-adjoint operator P on Hilbert space is nonnegative if
(Px;x) >0 for every = € H, and positive if (Pz;z) > 0 for every nonzero x € H
(equivalently, if it is nonnegative and injective). An invertible positive operator
(with a bounded inverse; i.e., nonnegative, injective and surjective after the Open
Mapping Theorem) is sometimes referred to as a strictly positive operator. If P is
positive, then (as it is self-adjoint and injective) it is left-invertible with a dense
range (since R(P)~ = N(P)* = {0} = H), so has a left inverse P~': R(P) — H,
which is bounded if and only if it is surjective (i.e., if and only it is invertible). For
any positive (i.e., injective nonnegative) P, the form defined by

(i) p=(P-;) i HxH—C

is an inner product generating a norm || - || p, so that (H, {-;-)p) is an inner product
space. If P is strictly positive (i.e., invertible nonnegative), then (H,(-;-)p) is a
Hilbert space (i.e., it remains complete). Let span S denotes the linear span of an
arbitrary set S C H and let \/S = (span S)~ denotes the closure of span S.

Biorthogonal sequences were introduced in the context of basis for separable
Banach spaces [13, Definition 1.4.1], [12, Definition 1.f.1] (and so H is separable
if it is spanned by a sequence). In a Hilbert space setting (where dual pairs are
identified with inner products after the Riesz Representation Theorem for Hilbert
spaces), the notion of biorthogonality is defined in terms of the inner product. This
is extended for the case of an inner product space (H, (-;-)), as follows.

Two sequences {f,} and {g,} of vectors in an inner product space (H, (-;-))
are said to be biorthogonal (to each other) if (fm; gn) = dm,n Where § stands for
the Kronecker delta function. If { f,,} is such that there exists a sequence {g,}
for which {f,} and {g,} are biorthogonal, then it is said that {f,} admits a
biorthogonal sequence (symmetrically, {g,} admits a biorthogonal sequence),
and {{f.}, {gn}} is referred to as a biorthogonal pair or a biorthogonal system.

If, in addition, | f,|| = ||gx|| = 1 for all n, then {{f,}, {g»}} might be said to be a
biorthonormal pair. However, it has been shown in [9, Corollary 2.1] that there is no
distinct pair of biorthonormal sequences. In other words, if two sequences { f,,} and
{gn} are biorthogonal and if ||f,|| = ||gn|| = 1 for all n, then f,, = g, for all n. Also,
if an arbitrary pair {f,} and {g,} of biorthogonal sequences is such that f, = g,
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for all n, then we get the usual definition of an orthonormal sequence, although in
general neither {f,} nor {gn} are orthogonal (much less orthonormal) sequences.

A sequence {f,} spanning the whole space H is sometimes called total. This
means \/{fn} = H (and H is separable in this case). It was pointed out in [17] that
if {fn} admits a biorthogonal sequence {g,}, then {gn} is unique if and only if {f.}
is total. We will be concerned with total sequences in the proof of Corollary 5.1.

Replacing (-;-) with (-;-)p, for some invertible (or simply injective) nonnega-
tive operator P, we get the definition of a P-biorthogonal pair.

3. FORMS OF BIISOMETRIC OPERATORS

Let A be an operator on a Hilbert space H, and let m be a positive integer.
There is a myriad of equivalent definitions for a Hilbert-space isometry. The one
that fits our needs here reads as follows: an operator A is an isometry if

A*A=T (e, A*A—1=0).

By replacing “=” with “<” we get another expression defining a contraction. Per-

haps the above displayed form for an isometry has been popularised in [6]. Tt seems
that the notion of m-isometry appeared in the last decade of the past century [1],
and a considerable number of research papers dealing with several aspects of it has
been noticed recently (see, e.g., [3, 15]). An operator A is an m-isometry if

Z (—1)7 (W)A*(W*J)AW*J -0
j=0 J
for some positive integer m. A l-isometry is precisely a plain isometry. On the

other hand, but still along the same line, there also is the notion of P-isometry with
respect to an injective nonnegative operator P: An operator A is a P-isometry if

A*PA=P  (ie, A"PA—P=0),

reducing to a plain isometry if P is the identity operator. (For recent papers dealing
with P-isometry — and its variations as, for instance, P-contractions, see, e.g.,
[14, 8]). The above two notions prompt the next one. An operator A is an (m, P)-
isometry (for a positive integer m and a positive operator P) if

37 ()aear <o

Again, a (1, P)-isometry is P-isometry. (For (m, P)-isometries and their variations,
such as (m, P)-expansive operators where the “=" sign is replaced by “<”, see, e.g.,
[4, 11]). The above notions are extended to a pair of operators as follows. Let B be
another operator on H. Operators A and B are said to make a biisometric pair [9] if

A*B=1 (ie., A*B—1=0).
Equivalently, if B*A = I. The pair (4, B) is said to be an m-biisometric pair if

Z:;O(_l)j (?)A*(m—j)Bm—j -0

for a positive integer m (see, e.g., [5]). We say that A and B make a P-biisometric
pair if, for a positive operator P,

A*PB=P (ie, A*PB—P =0).
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The above two expressions naturally lead to the notion of (m, P)-biisometric pair:
S0 pBri < o,
=0 J

where an (m, I')-biisometric is m-biisometric and a (1, P)-biisometric is P-biisomet-
ric. The present paper focuses on the last two notions.

4. ON (m, P)-BIISOMETRIC AND P-BIISOMETRIC PAIRS

Given operators A, B in B[H], let La, Rp € B[B[H]] denote the operators of left
multiplication by A and, respectively, right multiplication by B, given by

Ls(X)=AX and Rp(X)=XB forevery X € B[H].
Then set
Aep(P) = (La-Rp—1)"(P)
_ (ijo(_l)J ( f )(LA*RB)’“*J) (P)
— Ty grm—i) pgm—i
D INNC) (7)artm=ppm,
so that the pair (A, B) is (m, P)-biisometric if and only if A% (P) = 0. Since
A 5(P) = (La-Rp = D)(ALTR(P)) = Las R (A 5(P)) = AT p(P),
if a pair (A, B) is (m, P)-biisometric, then
ARTE(P) = A'ARTE(P)B
= AL R(P) = AALCL(P)B = AN L(P)B?
= AR p(P) = AN B(P)B = = A AL L(P)B"
for all positive integers n. In particular,
a P-biisometric pair (A, B) is (m, P)-biisometric for positive integers m.
Does the converse hold? The answer given here, in the absence of any additional hy-
potheses, is an emphatic “no”: for example, if A = B = ((1) %) and P is the positive

operator P = (} ;), then A is a (3, P)-isometry but not a P-isometry (i.e., the pair
(4, A) is (3, P)-isometric but not P-isometric). The following theorem says that

a necessary and sufficient condition for an (m, P)-biisometric pair (A, B)
to be P-biisometric, for a positive P € B[H|, is that La~Rp, given by
(La+Rp)(P) = A*PB, is power bounded.

Remark 4.1. Take arbitrary operators A, B, let the L4 be the left multiplication
by A, and Rp be the right multiplication by B, as defined above. The commutativity
of L, and Rp ensures that

(LaRp)" = L} R = La»Rp~,
and so

(LaRp)"(X) = (L}RR)(X) = (La»Rp)(X) = A"XB"
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for every nonnegative integer n and every operator X. Since
anpn(X) = (LanBpn — )™(X) = (L3R, — 1)™(X)

_ |:(LARB B I)mzm(n—l)

= Y ey LRy (A (X))

= =0 J\ARB A,B
for some scalars o, if (A*, B) is (m, X )-biisometric, then (A*", B™) is (m, X )-biiso-
metric for all positive integers n. Again, since

I(LaR)"| = supx ol A5 = supy,

L4 Rp is power bounded whenever both A and B are power bounded. Since an op-
erator A is power bounded if and only if its adjoint A* is power bounded, power
boundedness of A and B implies power boundedness of L 4+« Rg, which is the con-
dition of the next theorem.

o ay(LaRe)™ D (X)

oA < sup, || A"|| sup,, || B,

Theorem 4.1. Let A and B be operators on a Hilbert space (H,(-;-)) such that
the pair (A, B) is (m, P)-biisometric for some positive integer m and positive op-
erator P. If La+Rp is power bounded, then the pair (A, B) is P-biisometric.

Proof. The easily proved (use an induction argument) identity

(a—l)t:at—zz;;(;)(a—1,)j

for all positive integers ¢ implies
$p(P) = (La-Rp—1)"(P)
m—1 .
(La-Rp)™(P) = D" (7 ) 0% 5(P)

=0

() A% p(P).

= ATPBT -3
Hence, if (A4, B) is (m, P)-biisometric, then
0 = amppm 3" ()M 4(P)
_ *(m+41) m+1 m—1 m % ]
— 0 = atmpprtt N (AN 5(P)B

= 4 oppmt ST A () = () 8 ()
—  A*mi)ppmtl (m"_’l) Z’*,B(P) - Z:;;l (mjl)qu*,B(P)

_ A*(m+1)PBm+1 _ Zzn::]] (mjl)ﬁﬁ*,B(P)-

m—1

Jj=0

An induction argument now leads us to the conclusion that
m—1

0 = ampp" 3" ()&% 5(P)
= Aamppn— () ARTH(P) Z::(’})AQ*,B(P)
(o) amb®) + 37 N (3) 20 5(P)

for all integers n > m. Assume that La+«Rp is power bounded, which means that
there exists a positive scalar M such that ||L g« Rpn|| < M for all n. (Recall that

<~ A"PB"
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the power boundedness of L4« Rp is guaranteed by the power boundedness of the
operators A and B.) Then

limsup | A*"PB"z|| < M||P|| ||z||

n—oc

and there exists a positive scalar M;, dependent on j, such that

lim sup || A’ - g(P)z|| < M;|| Pl [|=|
m—1

for all z € H. Observe that ( " ) is of the order of ™! and (?), 0<j<m-—2,

is of the order of n™~2; hence, letting n — oo in

m— 1 *n n m=2/, j
8553 (Prel < = (lampsnal + X7 (3) 185 (el

(1)

||AZZ_]13(P):1:H =0 forall re’H <= AZ};%(P) =0.
Repeating the argument a finite number of times, this implies
AA*,B(P)ZO ~— A*PB=P. O
Choosing A = B in Theorem 4.1, with P positive (i.e., if A is a P-isometry), we
have A*PA = (A*P2)(PzA) = P and A is an isometry with respect to the norm
| -llp (ie., |Az||p = ||z||p for every x € H — see, e.g., [8, Proposition 4.1(b)]). So
there exists an isometry V such that A*P% = P2V*, In other words, the operator A

is a P-isometry in the sense that ||[P? Az|| = ||[P2z|| for all z € H. The P-isometric
property of A for the case of a nonnegative P does not imply the left invertibility

we have

010 110
of A. For example, if A = (1 0 0) and P is the nonnegative operator P = (1 1 0),
000 000

then 0 is in the point spectrum of A and A*PA = P. Such a situation can not,
however, arise if P is a positive (i.e., nonnegative and injective) operator. For, in this
case, if {x,} C H is a sequence of unit vectors such that lim,_ [[(A — A)z,| =0
and A is a P-isometry (i.e., the pair (A, A) is (m, P)-isometric), then

lim (AT A(P)xn;2,) = (A2 —1)™ lim (Pz,;x,) =0
n— o0 ’ n—0oo
implies (|A|? — 1) = 0; that is, the approximate point spectrum of A lies in the unit
circle (hence, A is left invertible).
5. P-B1soMETRIC OPERATORS AND BIORTHOGONAL SEQUENCES

A P-biisometric pair of operators was defined in Section 3 and biorthogonal
sequences were defined in Section 2.

Theorem 5.1. Let A and B be operators on a Hilbert space (H,(-;-)). Suppose
they make a P-biisometric pair whose adjoints are noninjective,

(i) N(A") #{0} and N(B") # {0},
and there exists an injective nonnegative (i.e., positive) operator P on H for which
(il) A*PB=P, NAYNR(P) # {0}, and N(B*)NR(P) # {0}.

Consider the inner product space (H,(-;-)p) with inner product given by (-;-)p =
(P-;-). Take arbitrary nonzero vectors

veENMA)NR(P) and we N(B*)NR(P)
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and, for each nonnegative integer n, consider the vectors
én=A"P 'w and 1, = B"P v

in H. We claim that there exist v € N(A*) N R(P) and w € N(B*)NR(P) such
that the sequences {¢n} and {tn} are biorthogonal on (H,(-;-)p). Moreover,

Apn = Oni1 and B, = Yny1,
A*(Pz/)nﬂ) = P{, and B*(P(anrl) = P¢n.

Proof. Let (-;-) be an inner product on H, where (H,(-;-)) is a Hilbert space.
First suppose A* and B* are noninjective (i.e., N'(4*) # {0} and N(B*) # {0},
which is equivalent to saying that A and B have nondense ranges; see, e.g., [7,
Propositions 5.12 and 5.76]). Next suppose there exists an injective nonnegative
(thus self-adjoint) operator P on H for which

A*PB=P (equivalently, B*PA = P),
so that a trivial induction shows that, for every nonnegative integer n,
A*"PB" =P (equivalently, B**PA™ = P).

Moreover, suppose

NAYNR(P)#{0} and N(B*)NR(P)+#{0}.
As P is an injective nonnegative operator, the form (-;-)p: H x H — C given by

(5)0p=(P-;-)
is another inner product in H. Take arbitrary nonzero vectors
veNA)NR(P) and we N(B*)NR(P).
Let P~': R(P) — 'H be the left inverse of P and set
y=P 'w#0 and z=P lw#0

in H. Now take ¢,, and 1, in ‘H defined for every nonnegative integer n by

¢n=A"z2=A"P " 'w and 4, =B"y = B"P v
Another trivial induction shows that

Ap,=A""2=¢,1 and By, =B " y=1,,1.
Therefore, since A*PB = P, we also get

A*(PYp41) = A*PByY, = P, and B*(P¢ni1)= B*PA¢, = Po,.
Now let m,n be a pair of nonnegative integers. If m < n, then
(6m i ¥n)p=(PA™z; B"y)=(2; A""PB™B"~™y) = (Pz; B"~™y) = (B*""™w )
and 50 (G, ;9n)p = 0 since w € N(B*) implies w € N(B*(™~™). Symmetrically,
(Om1¥n)p = (B"PATA™ "z 1y) = (PA™ "z 1y) = (z; 4" ") = 0
if n < m, since v € N/(A*). Moreover, for m = n,
(6nitn)p = (PA"z; B"y) = (z; A""PB™y) = (z; Py) = (z;v) = (P"'w;v).

Summing up.

(G ;n)p =0 whenever m#n  and  (¢n;¥n)p = (P 'w;v).
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Next we proceed to show that there are v € N(A*) N R(P) and w € N (B*) N R(P)
such that (P~ 'w;v) # 0, and so (as N (A*) N R(P) and N (B*) N R(P) are linear
spaces), there exist a pair (v,w) with v € N(4*) NR(P) and w € N (B*) N R(P)
such that (P~'w;v) = 1. In this case (that is, for such a pair (v, w) of vectors in
N(A*)NR(P) x N(B*) NR(P)) we get

<¢m7wn>P =0 if m#n and <¢n’1/)n>P:17
so that {¢,} and {¢,} are biorthogonal sequences on (H,{-;-)p). That there is
such a pair (v, w) for which (P~'w;v) # 0 is a consequence of the following result.

Claim. N(A*)NR(P) L P-Y(N(B*) N R(P)).

Proof of Claim. Since A# O (as A*PB = P#0), take 0 # u € R(A) so that u = Az
for some 0 # z € H. Suppose u € P~YHN(B*) NR(P)). Then u = P~'w for some
w € R(P) for which B*w = 0. Thus Az = v = P7'w, and so PArx = PP~ 'w =
w (as w € R(P)). Then Px = P*z = B*PAx = B*w = 0, so that x =0 (as
N(P) = {0}), which is a contradiction. Hence, R(A4) N P~1(N(B*) N R(P)) = {0},
and so R(A)~N P~ Y(N(B*) N R(P)) = {0}. Equivalently (as R(A)™ = N(A*)1),
N(AHE N P YN (B*) N R(P)) = {0}.
Suppose P~ (N(B*) N R(P)) LN(A*). Then P~ (N (B*) N R(P)) C N (A*)*. So
PTYN(B*)NR(P)) = PY(N(B*) NR(P)) N P~ (N(B*) N R(P))
C N(AY NP (NV(B*) NR(P)) = {0}
by the above identity, so that N'(B*) N R(P) = {0}, which is a contradiction. Hence
N(A%) £ PTHN(BT) N R(P)).

Thus there exist v’ € N(A*) and u € P~1(N(B*) NR(P)) such that (v';u) # 0.
Since R(P) is dense in H, and since the inner product is continuous, there exists a
vector v € N(A*) N R(P) such that (v;u) # 0. Therefore

N(A*YNR(P) L PTYN(B*)NR(P)). O
The above claim ensures that there are w € N'(B*) N R(P) and v € N(A*) N R(P)
such that (P~ 'w;v) # 0, concluding the proof of the theorem. |

If the positive P is surjective (i.e., if it is invertible), then the fact that R(P) = H
simplifies condition (ii). The above theorem generalises [9, Theorem 3.1] (also [10,
Theorem 3.1]). Indeed, by setting P = I we get the result in [9] as a particular case.

The next corollary shows that a P-biisometric pair has a shift-like property
regarding biorthogonal sequences with respect to the inner product {-;-)p (i.e.,
with respect to P-biorthogonal sequences).

Corollary 5.1. Let A and B be operators on a Hilbert space 'H for which there
exists an injective nonnegative operator P on H such that

A*PB =P,

and consider the biorthogonal sequences {¢n} and {1} defined in Theorem 5.1 in
terms of nonzero vectors v € N(A*) NR(P) and w € N(B*) N R(P). In addition,
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suppose these biorthogonal sequences span H, and also suppose a vector x € 'H has
series expansion in terms of {¢n} and {tn}. Then this x can be expressed as

T = Z:o:0<93§1/)k>P br = Z;O:0<x§¢k>P Vs

and its image with respect to A, A*, B, and B* can be expressed as

Az = Z:;O<x§¢k>P ¢k+1 and Bx = Zzo:(](x S ORYP Wk,

Afx = Z:;O@: s Okr1)p YK and Bz = Z:):O(SC;TMH)P Ok

Proof. Take an arbitrary x € H. To begin with, note that if a sequence in a biorthog-
onal pair spans H, then it does not necessarily follow that all elements in H have an
expansion as the limit of a linear combination of elements of the sequence (cf. [2, Ex-
ample 5.4.6]). Thus first suppose the biorthogonal sequences {¢,} and {¢,} span H
(i.e., V{on} = V{¥n} = H). According to [17, p.537], {¢»} admits a biorthogonal
sequence if and only if none of its elements is the limit of a linear combination of
the others, and in this case the biorthogonal sequence {1, } is uniquely determined
if and only \/{¢,} = H. Thus assume first that the biorthogonal pair {{¢n}, {)n}}
is unique in the above sense. In addition, also suppose that

x = Zkzoakq’)k = Zkzoﬂkiﬁk
for some pair of sequences of scalars {a,,} and {3,}. Then
an =(xz;¢n)p and  Bp = (z;¢n)p

for every n > 0. Indeed, by the continuity of the inner product, and recalling from
Theorem 5.1 that {¢x } and {1} are biorthogonal with respect to the inner product
(+;-)p, we get

[ee] oo
(T;9n)p = Zk:00k<¢k Yn)p =an and  (z;¢n)p = Zkzoﬂka;%)P = 0B
for every n > 0. Recall again from Theorem 5.1 that for each n > 0

A ¢n = ¢n+1 and Bﬁ}n = 7;Z)n+1-

Using the above identities only (and the continuity of the inner product), apply A
and B to the expansions of = in terms of {¢,} and {1,}, respectively, and apply
A* and B* to the expansions of z in terms of {¢,} and {¢,}, respectively, to get

Av = Z?:o<x;wk>PA¢k - Z:i0<93§1/)k>P Dkt1,
Bz = Z:io<$;¢k>P By = Z:io<x;¢k>P Vit
A= (Aaipte =Y (@ AG)pUk =Y (@idk)p U,

Bz = Z:;O<B*l’;1/)k>P br = Z:;O<$;Bl/)k>P br = Z:io<$§¢k+1>P or. O
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6. (m, P)-BIISOMETRIC PAIR FOR A STRICTLY POSITIVE P

Throughout the paper the operator P € B[H] has been assumed positive (i.e.,
nonnegative and injective) so that (-;-)p = (P-;-) is an inner product generating
the norm || - ||p = ||[P? - ||2. If P is, in addition, surjective, so that it is invertible
(i.e., strictly positive), then the inner product space (H, (-;-)p) becomes a Hilbert
space whenever (H, (-;-)) is a Hilbert space.

If (A, B) is an (m, P)-biisometric pair and the positive P is invertible, then
assuming that L4+ Rp is power bounded we get

Aasp(P)=0 <= A*(PBP™')=(P'A*P)B =1,

so that both A and B are left invertible. Furthermore, if either of A* and B* is
injective, then both A and B are invertible: in particular,

N(AY) #{0} <= N(B) #{0},

and A is invertible if and only if B is invertible. The following theorem shows that
a stronger result than Theorem 5.1 is possible in the case in which the operators A
and B are power bounded. But before that, some notation and terminology is in
order. The numerical range W (A) of an operator A is the set

W(A) ={XeC: \=(Az;z), z € H, ||z| =1},
and the numerical radius w(A) of A is
w(A) = sup{|A|: A € W(A)}.
The spectral radius r(A4) of A is
r(4) = sup{]Al: A€ ()} = lim_ A"

1
n,

A is normaloid if 7(A) = ||A|| (which implies r(A) = w(A4) = ||A]|), A is convezoid
if the closure W(A) of the numerical range of A equals the convex hull convo(A)
of the spectrum of A, and A is spectraloid if r(A) = w(A) [6, Problem 219]. Tt is
well known that the classes consisting of normaloid and convexoid operators are
independent of each other, and that both these classes are contained in the class of
spectraloid operators.

We close the paper by showing that for an invertible positive P, a pair (4, B) of
power bounded (m, P)-biisometric operators is such that either A and B are both
similar to the same unitary operator, or they satisfy the conclusion of Theorem 5.1.

Theorem 6.1. If A% p(P) =0 (i.e., (A, B) is an (m, P)-biisometric pair) for
some invertible positive (i.e., strictly positive) P, and A, B are power bounded, then
(a) either
(i) there exists a unitary operator U such that A and B are similar to U,
or
(ii) A and B satisfy the conclusions of Theorem 5.1 (with some obvious
changes, since now R(P) =H).

(b) Furthermore, in case (a-i), if A and A~ (or B and B~") are either normaloid
or convexoid or spectraloid (all combinations are allowed), then A is unitary
(respectively, B is unitary) and B = P~' AP (respectively, A= PBP~1).
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Proof. The power boundedness of A and B implies (the power boundedness of
L +«Rp, and hence)
Aa+p(P)=0 += A*=PB'P' «— A=pP'B*'P
and, for all z € H and positive integers n,
A*PB=P = A"PB"P'=1
= |lzl| < |P7'B*"P||||A"z]| < M| Az < My Mo||z]|
for some positive scalars M; and Ms. But then
a5zl < [|A™z|| < Mal|z|| for all zeM

implies the existence of an invertible operator S and an isometry V' such that SA =
VS [8, Proposition 4.2]. Thus, since A*S*SA = S*S, there exists an invertible
positive operator Py, P2 = S*S, and an isometry U such that A*P; = P,U*, or,
Py A =UP,. Similarly, since

]| < [|IP~1 AP |B x|l < Mi1 || Bzl < Maz|z|

for some positive scalars My, M15 and all x € H, there exists an invertible positive
operator P, and an isometry V5 such that P,B = Vo Ps.

(a) The operators A and B being left invertible, if neither of A* and B* is injective,
then N (A*) and N(B*) are nonzero, and since R(P) = H, the argument of the
proof of Theorem 5.1 goes through to prove (a-ii). If one of A* and B* is injective,
then both A and B are invertible, A = Pf]U P, with the isometry U being a
unitary operator and B = P71 A*" 1P = P71 P, UPI_IP = Q~'UQ for an invertible
operator Q. This proves (a-i).

(b) Assume now that A and A~! are either normaloid or convexoid or spectraloid.
Then, since o(A*") is a subset of the boundary 9D of the unit disc D,

r(ATY) = w(AT!) =1,
and hence

W(A*) C convo(ATh).
This [16, Theorem 1] implies that A is a normal operator. Since

A*P1=P1U* <— AP, =PU
by the Putnam-Fuglede commutativity theorem ([6, p.104]),
A*P? = PU*P, = P2A* = A*P, = PLA* — PiU* = PA* <= U = A.

Trivially, B~! = P~'A*P = P~'U*P implies B = P~'UP. Since a similar argu-
ment works for the case in which B is normaloid or convexoid or spectraloid, the
proof is complete. o
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