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Abstract. It has been shown in a previous paper [6] that an infinite-dimensional stochastic
discrete bilinear system is mean-square stable if and only if the spectral radii of two Hilbert-
space operators transformations are both less than one. The present paper investigates
conditions to be imposed on the model operators in order to ensure that such spectral
radii coincide. Several examples are presented and the main result establishes the spectral
radius indentity for models with compact operators.
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1. INTRODUCTION

Throughout this paper H will denote a separable nontrivial complex Hilbert space,
and B[X] will stand for the Banach algebra of all bounded linear transformations of a
Banach space X into itself. Both the norm in X and the induced uniform norm in B[X]
will be denoted by || - ||, and r(-) will stand for the spectral radius in B[X]. An upper
star * will mean adjoint in B[H] as usual. Let {A; € B[H]|; k > 0} be a bounded
sequence of operators, and let {7, € € k > 0} be a nonnegative sequence in ¢;. For
each n > 0 let F,, € B[B[H]] be defined as F,,(Q) = X}_,1:ArQA; for all Q € B[H].
Note that {F,, € B[B[H]]; n > 0} converges uniformly (indeed sup,~ [|[Frnt+r — Full =
SUP, >0 SUP| g =1 [Fn+0(Q) = Fu(Q)I < supso [Akl*ER2, 117 — 0 as n — o0). Let
F € B[B[H]] be the limit of {F,; n > 0} so that

F(Q) = wArQA;
k=0
for all Q € B[H]. Similarly define # € B[B[H]] as
FHQ) = ) mAQA
k=0
for all @ € B[H], where the above convergences are in the uniform topology of B[B[H]].
Such a pair (F, F#) of bounded linear transformations from the Banach space B[H]
into itself appears in the stability analysis for infinite-dimensional stochastic discrete bi-

linear systems (see e.g. [1], [5] and [6]). For instance, consider a discrete bilinear model
whose H-valued state sequence {z;; i > 0} evolves as follows.

Ao+ ) (wi;en) Ay
k=0

Tiy1 = T; + Uitq To = Up;

where {w;; ¢ > 0} and {u;; ¢ > 0} (the multiplicative and additive input sequences,
respectively) are zero-mean independent H-valued second-order random sequences which
are independent of each other. Suppose {w;; ¢ > 0} is stationary in correlation so that it
has a constant correlation operator, say S € B [H]. Here B;[H] denotes the class of all
nuclear operators (i.e. the trace class) from B[H], and B [H] stands for the class of all
nonnegative nuclear operators. Moreover, let {ex; k > 1} be an orthonormal basis for H
made up of eigenvectors of S. The existence of such an orthonormal basis is ensured by the
Spectral Theorem for compact normal operators (see e.g. [7, p.12]). The above described
discrete-time model is mean-square stable if the state correlation sequence converges in
B[H] to a correlation operator (i.e. to an operator in By [H]) whenever the addive input
correlation sequence does so. (For continuous-time versions see e.g. [3] and [9]). By setting
v = 1 and v, = (Sey;ex) for each k > 1 (i.e. the eigenvalues of S), it has been shown
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in [6] that »(F#) < 1 is a necessary condition for mean-square stability which, together
with its dual r(F) < 1, is sufficient as well. Therefore, if 7(F#) = r(F), then 7(F) < 1 is
a necessary and sufficient condition for mean-square stability.

The purpose of the present paper is to investigate conditions to be imposed on the
operators {Ay; k > 0} that ensure the spectral radii identity r(F#) = r(F). Note that
this trivially holds if {Ag; k& > 0} is a sequence of self-adjoint operators. We shall verify
that it also holds whenever the operators {Ax; k > 0} are normal and commute. On the
other hand, a class of operators for which the inequality 7(F#) < r(F) necessarily holds
will be exhibited as well. Our main theorem establishes the identity r(F#) = r(F) for any
sequence {Ay; k > 0} of compact operators.

2. PRELIMINARIES

The results in the remaining paper are all based on the following property whose proof
can be found in [6].

LEMMA.  For any bounded sequence {Ay; k > 0} the identity || F*|| = ||F*(I)| holds for
every ¢ > 0.

Given a sequence of operators {A, € B[H|; k > 0} let IK denote the set of all
nonnegative integers such that A, # O. If Ay = A for every k € IK, then F'(Q) =
(Crerr) A'QA* for all Q € B[H] and every i > 0. Hence | F/(I)|| = (Zreryr)!||A?
for each ¢ > 0. By using the above lemma, and according to the Beurling-Gelfand formula
for the spectral radius (ie. r(T) = lim;_ o ||T%]|'/* for every T € B[X]), it follows that
r(F) = (Srerr)r(A)2. Since r(A) = r(A*) we may conclude:

If the nonzero elements of {Ag; k > 0} are constant, then r(F#) = r(F).

In particular, if the bilinear model described in Section 1 is reduced to a linear one (e.g.
by setting Ay = O for every k > 1), then r(F#) = r(F) = r(Ap)?. This settles the
mean-square stability problem for infinite-dimensional discrete linear systems.

If A; and Aj, are normal operators that commute, then each of them also commutes
with the other’s adjoint. (This is Fuglede’s theorem — see e.g. [7, p.20].) Thus A;F(I) =
F(I)A; for every j > 0, so that F'(I) = F(I)* for every i > 0 by induction on
i, whenever {Ag; k > 0} is a sequence of commuting normal operators. Applying the
preceding lemma and the Beurling-Gelfand formula for the spectral radius again we get
r(F) = r(F(I)). However, for any sequence of normal operators {Ax; k > 0}, we have
F#(I) = F(I). Conclusion:

If {Ar; k >0} is a sequence of commuting normal operators, then r(F#) = r(F).

The commuting condition can be relaxed if the nonzero normal operators have a constant
absolute value. That is, if Ay A} = A7 A, = R for every k € IK. In such a case it is readily
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verified by induction that Fi(I) = F#(I) = (Sgexi) R for every i > 0. Hence, by
using the same arguments (previous lemma and Beurling-Gelfand formula), we have:

If the nonzero elements of {Ax; k > 0} are normal operators with a constant absolute
value (particular case: unitary operators), then r(F#) = r(F).

Next we shall characterize a class of operators for which r(F#) < r(F). First note
that: if {A{Ar; k > 0} is a sequence of (orthogonal) projections that are orthogonal
to each other, then r(F#) < (EkeK%%)%. (Indeed | F#(I)z|]? = Spexy?||ALArz|? <
Srer2||z||? for every @ € H so that r(F#) < |F#| = |F#(I)|| < (Skexn?)? by the
previous lemma.) Moreover, if the nonzero elements of {Ax; k > 0} are coisometries (i.e.
AkA;; = I), then T(f) = EkeK'Yk- (In fact f(]) = (EkEK'}’k)I so that fz(l) = (EkeK’yk)iI
for every ¢ > 0 and hence the result follows — use the previous lemma and the Beurling-
Gelfand formula.) Conclusion:

If the nonzero elements of {Ak; k > 0} are coisometries such that A} Ay, are (orthogonal)
projections that are orthogonal to each other, then r(F#) < (Sper?)? < Sperxmi = 7(F).

Note that the second of the above inequalities in fact is Jensen’s inequality. Thus r(F#) <
r(F) whenever the ¢1-sequence {v; > 0; k € IK} has at least two nonzero elements. This
generalizes the concrete example given in [2] (i.e. by setting H = {5, Agz = (£2,&4, &6, )
and A1x = (&1,&3,85,---) for all x = (&1,892,83,-++) € by, Ay = O for every k > 2 and
71 =0 = 1, it follows that r(F) = 2r(F#) = 2).

3. CONCLUSION

In this final section we shall verify that r(F#) = r(F) for any bounded sequence
{Ay; k > 0} of compact operators. In particular, for any bounded sequence of operators
defined on finite-dimensional spaces, so that this also settles the mean-square stability
problem for finite-dimensional discrete bilinear systems.

THEOREM. If {Ay; k > 0} is a sequence of compact operators, then r(F#) = r(F).

Proof. Let Boo[H| be the class of all compact operators from B[H]. Suppose Ay € By [H]
for every k > 0 so that F,,(I) = X}_, 1k Ar A is compact for every n > 0 (for B [H] is a
two-sided ideal of B[H] — see e.g. [8, p.132]). Since F,,(I) — F(I) in B[H] as n — oo it
follows that F(I) € Boo[H]| (because Boo[H] is closed in B[H]| — see e.g. [8, p.132]). Let
{E,, € B[H]; m > 1} be an increasing sequence of finite-rank (orthogonal) projections
that converges strongly to the identity. Since F(I) is compact it follows that (see e.g. [8,
p.136])
E,.F(I)E,, — F(I) in B[H] as m — oQ.

Now recall that B;[H| (the class of all nuclear operators) contains the finite-rank operators
so that F,, € Bi[H] for each m > 1. Let || - ||; be the standard (trace) norm in B;[H]|
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(i.e. |7 is the trace of (T*T)2 for every T € Bi[H]). Since By[H] is a two-sided ideal
of B[H] such that max{||TL|1,||LT|1} < ||L|| ||T||1 for every L € B[H] and T' € By[H]|
(see e.g. [8, p.173)), if follows that E,,F(I)E,, € B1[H]. Indeed

IEnF(DEml; < |IExll; IFD)] < o
for each m > 1. Since E,,, F(I)E,, € B1[H]| we get
[F(EnFDELD| < 1BnFDEL, |F7]

for each m > 1 and every i > 0 (actually || F/(Q)| < [|FH(Q)|1 < [|Q|1]|F#|| for every
i > 0 whenever Q € Bi[H] — cf. [6]). Therefore, by the preceding lemma,

|7 = 17D = |7 (F)|
= [|F (EnF (D) Em +F(I) — EnF(I)Ey)|
< || FAERFIER)| + || F (FUI) — EnF()En)||
< Enl} IFN | F# + | F|| 1F(I) = EmF(I)En|

for each m > 1 and every ¢ > 0. Moreover, since || F(I) — E,,F(I)En| — 0 as m — oo,
take an integer M large enough such that || F(I) — ExyF(I)En|| < 4. Thus

IF = S 11 < IBw 17 17
for every ¢ > 0. Adding up from zero to an arbitrary positive integer N we get
3 Xiso [F+ 1Y =5 < IBmI 17120 1741

Hence X2°,||F?|| < oo whenever X°,||F#%|| < oo. Similarly (just replace Ay by Af) we
can prove the converse so that, in fact,

o o
SNt <o e Y |F <.
=0 1=0

Equivalenty (see e.g. [4]),
r(F#) <1 < r(F) <L

Finally note that, for any o > 0, (o' F)(Q) = £ (a2 A)Q(a~ 2 A%) for all Q € B[H].
Since a~% Ay, is compact whenever Ay is, the above equivalence leads to

r(f#) <o & r(F) <a

for every a > 0 (reason: o~ 'r(F) = r(a”F)). Thus, if one of the above spectral radii is
less than the other, then it is less than itself. Therefore

n(F#) = r(F).
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