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1. NOTATIONAL PRELIMINARES

Let X and X’ be Banach spaces, and let B[X, X'] be the Banach space of all bounded
linear transformations of X into X’. We shall write B[ X] for B[X, X], and G[X] for the group
of all invertible operators from B[X] (i.e. those which are also bounded below and map X onto
itself). The norms in X, in X’ and the induced uniform norm in B[X, X’] will all be denoted
by || - ||, and r(-) will stand for the spectral radius in the Banach algebra B[X]. Throughout
the paper H, H' and H" will stand for separable nontrivial complex Hilbert spaces. Inner
product in any of them will be denoted by (-;-), and an upper star * will stand for adjoint as
usual. Let BT[H| be the weakly closed convex cone of all (self-adjoint) nonnegative operators
in B[H], and set GT[H] = BY[H] N G[H]. The class of all nuclear operators (i.e. the trace-
class) from B[H] will be denoted by Bi[H]. Set B [H| = Bi[H] N B*[H]. The trace of
T € By[H] is defined as tr(T) = Y ;- o(Tex; ex) which does not depend on the choice of the
orthonormal basis {ey; k > 0} for H. For each T € By[H] set ||T||; = tr((T*T)?) so that
|T||; = tr(T) whenever T € Bi"[H]. Indeed, ||-||; is a norm in By[H] and (B1[H],|| ||1) is a
Banach space which is a two-sided ideal of B[H] such that max {||TL||1, ||LT||1} < ||L|| ||T]|1
and tr(TL) = tr(LT) for every L € B[H] and T € By[H]. Since [tr(T)| < ||T||; for every
T € B1[H], tr : B1[H] — C'is a bounded linear functional. For any f,g € H let (fog) € By[H]
be defined as (f o g)h = (h;g)f for all h € H, so that (f o f) € Bf [H]. Let £1(B;[H]) be
the Banach space of all B;[H]-valued || - ||;-summable sequences. We shall use the same
symbol || - || to denote the norm in ¢4 (B;[H]), so that [|T||; = > =y ||Til|1 < oo for every
T = {T;, € B1[H];i > 0} € ¢1(B1[H]). The class of all B{"[H]-valued sequences from
¢1(B1[H)) will be denoted by ¢; (B [H]).

Given a fixed probability space (€2, X, i), where X is a g-algebra of subsets of a nonempty
set  and p is a probability measure on X, set H = Lo(Q2, u; H) for any Hilbert space
H. Thus H is the Hilbert space made up of equivalence classes of H-valued measurable
maps = defined (almost everywhere with respect to the measure p) on Q such that ||z||3, :=
ellz|]? = fﬂ l|z(w)||?du(w) < co. This is the so-called second order property and such a
norm in H is generated by the inner product (z;y)y = e(z;y) = [, (a( w))du(w) for
all z,y € 'H. Hence H is the Hilbert space of all H-valued second—order random variables on
(Q,%, ). Here e stands for the expectation of the underlying scalar-valued random variables
on (2,3, ). For any = € H its expectation, correlation and covariance (defined as usual -
see e.g. [5]) will be denoted by Ex € H,E(xox) € Bff [H] and E(zox) — (Exo Ex) € Bf [H],
respectively. Let ¢o(H) be the Hilbert space of all H-valued second-order random sequences
x = {x; € H; i > 0} such that ||x||§2(H) =Y o0 ||zl |3, < co. Recall that ||z]|3, = ||E(zoz)||x

for every = € H (see e.g. [5]). Hence x € l5(H) if and only if {€(x;0x;); i > 0} € £1(B] [H)).

2. INTRODUCTION

Quadratic optimal control problems and the associated algebraic Riccati operator equa-
tion for infinite-dimensional discrete linear systems, operating either in a deterministic or
in a stochastic environment, have been investigated over the past two decades (see e.g. [8],



[10], [3] and [12]). For infinite-dimensional discrete bilinear systems operating in a stochastic
environment, which comprise the models we shall be addressing in the present paper, this has
previously been investigated in [11]. We shall consider here an operator theoretic approach
that differs from that of [11] in which it relies on the properties of the operators F and F7#
in B[B[H]] (see Section 3) that have recently been established in [7]. Moreover the criterion
to be minimized here is motivated from the H,- control problem; the main difference relying
on the admissible class of additive input sequences. We shall work under independence and
zero-mean assumptions which considerably simplify the problem and allows for an exact so-
lution to be obtained. Furthermore the solution to the quadratic stochastic optimal control
problem will be stated under detectability hypothesis, thus mirroring its linear counterpart.
Existence and uniqueness of a nonnegative solution to the associated Riccati-like equation
will be established in Section 7 by using the auxiliary results developed in Section 6.

Consider a discrete bilinear system with a linear feedback loop operating in a stochastic
environment, whose model is given by the following infinite-dimensional difference equation.

Ao+ ) (wiser) Ay
k=1

(1) Tir1 = x; — BKx; + Dviyq, xg = Duy,

where {A; € B[H]; k > 0} is a bounded sequence, B € B|H',H|, D € B/H" H|, K €
B[H, H'], {ex; k > 1} is an orthonormal basis for H, {z; € H; i > 0} (the state sequence)
and {w; € H; ¢ > 0} (the multiplicative input sequence) are second-order H-valued random
sequences, and v = {v; € H”; i > 0} (the additive input sequence) is a second-order
H"-valued random sequence. Conditions ensuring convergence in H for the above infinite-
dimensional model have been established in [6]. We shall precise the assumptions on the
stochastic environment that will suffice our needs in the next section. Now take M € B [H]
and N € GT[H'], and consider the output sequence z = {z; € H ® H’; i > 0} given by

for every integer ¢ > 0. The quadratic stochastic optimal control problem associated with
the above discrete model that we shall be addressing in this paper is that of finding the state
feedback stabilizing controller K that minimizes the impact of the additive input disturbance
v on the output z. Formally, find K € I'g that minimizes

Z ’
(2.0) . 12| ¢, (H@H)
0tvevw |[VIle(nr)

Y

where the admissible classes Vy C lo(H”) and I'y C B[H, H'] will be specified next so that
the above criterion is well defined. Indeed, it will be shown that the solution K € I'g to the
above problem actually minimizes ||z||s, g1 ) over I'p for any v € Vi (and, in particular,

for v; = 0 for every ¢ > 1, which characterizes an additive-input-free model — i.e. one with
v =0).



3. THE CLASS Vy,

Let us make the following assumptions on the stochastic environment. Suppose {w; €
H; ¢ > 0} is an independent random sequence that is stationary in expectation and cor-
relation, so that Ew; = s € H and &(w; ow;) = S € Bf[H] for every i > 0. Set
C = S—(sos) € B [H] and let V,, be the class of all zero-mean independent random sequences
from ¢5(H") that are independent of {w; € H; ¢ > 0}. Suppose v = {v; € H"; i > 0} € Vy
and set R; = £(v; ov;) € B [H] for every i > 0. It has been shown in [6] that, under the
above assumptions (which in fact are essentially the same assumptions made in [7]), the state
correlation sequence {Q; = &(x; o x;) € B [H]; i > 0} evolves according to the following
linear model.

(3.a) Qi+1 = Fpr(Qi) + DR; 11 D™, Qo = DRyD",
so that
(3.) Qi = Fii(DR;D"),

=0

for every i > 0 (recall: £(Dwv; o Dv;) = DE(v; ov;)D* - see e.g. [5]), where Fpi € B[B[H]]
is given by
Fpr(P)=Fpk P Fi +7T(P)

for all P € B[H], with

FBK = AO—BK +ZS Bk
k=1

in B[H], and 7 € B[B[H]| defined by

= ) (Cersen)Ax P A;

k,f=1

for all P € B[H]. Here {e; k > 1} is supposed to be an orthonormal basis for H that ensures
the above convergences in the uniform topologies of B[H| and B[B[H]], respectively. The
existence of such an orthonormal basis (e.g. the one made up of eigenvectors of S € Bj"[H)),

which may depend on the correlation operator S € Bj [H] but not on the bounded sequence
{(Ap — BK) € B[H], A, € B[H]; k > 1}, has been established in [6] (also see [1]).

Associated with 7 and Fpk set 7# € B[B[H]| and .7-" 7 € B[B[H]| as follows: for all
P e B[H],

T#(P)= Y (Ceper)A; P Ay,
k=1

Fh(P) = Fjp PFpg + T#(P).
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Note that the feedback loop in model (1) is characterized by the product BK € B[H]. An
absence of it (i.e. the case of BK = O) leads to operators Fp, Fo and ]-"g. Set F = Fp,
F =Fp and F# = fgﬁ for short, so that Fgx = F — BK and, for all P € B[H],

F(P)=FPF* +T(P), Fpi(P) = (F — BK)P(F — BK)* +T(P),
F#(P)=F*PF+T#(P),  Fi.(P)=(F—-BK)*P(F - BK)+T#(P).

4. THE CLASS T'p
Given B € B[H', H] set
I'p={KeB[HH]: rFhi) <1}

Under the assumptions made in the previous section T(FgK) < 1 is a necessary condition
for mean-square stability of model (1) which, together with its dual r(Fpk) < 1, is sufficient
as well (cf. [7]). Thus a stabilizing state feedback controller K necessarily lies in I'g. Now
consider the following functional J.(-) : £, (B [H"]) x I'p — R™.

(4.a) Jr(K) = i Z tr (DTjD*fgf;j (M + K*NK))

i=0 j=0

for all T = {T; € Bf[H"]; i > 0} € (;(Bf[H"]) and K € T'z. We shall re-
state the optimization problem (2.a) in terms of such a functional, but first let us ver-
ify that in fact it is well defined. Note that ZZ tr(DT;D*Fi (M + K*NK)) <
|| D|[? ||M+K*NK||ZJ o 1511 || BK || for every i > 0. Set a = {||F K||; i > 0} and
b= {||T5||1; i > 0} which are in £; (for r(Fj,) < 1-scee. g [4] - and T € ¢1(B1[H"])). Thus
the convolution (or the Cauchy product) ¢ {ZJ -0 || F9% | || T5]|1; @ > 0} = a*b lies itself
in ¢ as well with [|c[[; < ||a|[1][b]]1 (see e.g. [2, p.529]). Hence Y ;= OZ] 0 H BK H |75 <

Dyrareiva K||)||TH1 Moreover, since BT[H] is invariant under ]—"gK : B[H] — B[H] (cf.
[7]), M + K*NK € B*[H| and T; € BT[H"] for every i >0 (for T € 61(B+[H”])), it fol-

lows that tr(DT; D*F#,. (M + K*NK)) = tr(sz*FgK (M+K*NK)DT2) > 0 for every
0 < j <. Hence

0 < Ja(K) < (HDWHM + K*NK||Y Hf;%;]D ITls < o0
=0

for all T € ¢1(Bf [H"]) and K € I'g. Therefore J.(K) : ¢;(B{ [H"]) — R™ is a (uniformly)
bounded functional for each K € T'g. Thus, for any set A C ¢, (B; [H"]) such that A\ {O} #
@, the functional J, : I'p — IR™, given by the formula

Jr(K
(4.b) JA(K) = sup T (K)
oxter ||TIh




for every K € I'g, is well defined.

Remark 1. Note that r(F},) < 1is not equivalent to 7(Fpx) < 1 for the general bilinear
case where 7 is not null; and this is the reason why the upper symbol # can not be suppressed
from the definition of I'g. To check this consider the following particular case with BK = O.
Set H = {5, take an arbitrary real a # 0, and set Ay, A; € B[{5] as follows.

Aoh = a(nz2,na,m6, - ), Arh = a(n,n3,m5," - +),

for all h = (7’]1,7’]2,7’]3,' ) € 62; so that A()AS = A1 T = OéZI, ASAO = a2diag(0, 1,0, 1, . )
and A% A; = a?diag(1,0,1,0,---). Suppose s = 0 and S = diag(oy, 09,03, --) € B [{2] with
o1 =1, and set Ay = O for every k > 2. Thus

F(I) = AoAj + AjAT =20°1,  FH(I) = AjAg + ATA; = °I.
Hence Fi(I) = (2a2)'T and F#'(I) = (a2)'1, so that (cf. Property Py in [7]) [|F||F = 2a2

and ||]:#i 7= a?, for every i > 0. Therefore, by the Beurling-Gelfand formula for the
spectral radius (see e.g. [2, p.567)), r(F) = 2r(F#) = 2a2.

5. PROBLEM RE-STATEMENT

For any v € V, the state correlation sequence {Q;; i > 0} evolves as in (3), and for
any K € I'p the functionals in (4) are well defined. This will be enough to establish that
z € lo(H @& H') whenever v € Vy, and K € T'p, so that the optimization problem posed in
Section 2 makes sense. Indeed, since

5 =Miz; O NiKz; e HO
it follows by linearity of the trace that
1 1
12il Fane = |IM i [f, + [|N 2 Kail[3,
=e(Muz;;z;) + e(NKa;; Kz;)
=tr(Q:M) + tr(Q; K*NK)
= Y t(FzL(DR;D*)(M + K*NK))

0<j<i

for every ¢ >0 whenever v € Vy, according to (3-b) (recall: HL%xH% =¢e(Lz;z) =
tr(E(z o x)L) for every x € H and L € BF[H] - see e.g. [5]). However tr(Fp(T)L) =

tr(TF#,. (L)) for every i >0, T € By[H] and L € B[H] (cf. [7]). Hence

il Buare = D tr (DR;D* Fy (M + K*NK))

=0
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for every i > 0 whenever v € Vy,. Associated with any v = {v; € H”; i > 0} € lo(H") set
R = {R; = E(v;ov;) € Bf[H"]; i >0} € £1(B; [H"]), so that

VI, ey = [IRIL = Y 11Rills = ) tr(Ra);
i=0 i=0

and set A(Vy) = {T € (1(B[H"]) : T; = E(us ou;) Vi >0 for some u € Vy}, so that
v € Vy if and only if R € A(Vy ). Therefore

(5) 12117, erey = D Naillhgre = Y (e(Mas; zi) + e(NKai; Ka;))
=0 =0

— Y (Qu + K*NK)) = Jn(K)

for every R € A(Vyw) and K € ' (cf. (4-a)), and hence z = {z; € H&H'; i > 0} € bo(HEH)
whenever v € Vg, and K € I'g. Conclusion: the optimization problem in (2.a) can be
equivalently stated as follows. Find K € I'g that minimizes

K
(2.b) sup 4l )
O£ReA(Vy) |IR[1

Note that A(Vy) \ {O} # @ since Vi \ {0} # 0. In other words (cf. (4-b)), find Kp € I'p
such that

(2.¢) Iawa) (Kp) < Jaw,)(K)

for all K € I'g.

6. AUXILIARY RESULTS

Propositions 1 to 4 below will be required for proving the main results of the next section.
Throughout the remaining of the paper we shall refer to the setup of the previous sections.

Proposition 1.  Take Q € B[H| arbitrary. For any P € B*[H] set
Kp = (B*PB+ N) 'B*PF

in B[H, H']. The following assertions are equivalent.

(a)  Q+KjNKp=P—Fhy (P)

(b) Q+ K*NK = P — F}.(P) + (K — Kp)*(B*PB + N)(K — Kp) for an arbitrary
K € B[H, H'].
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(c) Q=P —F#(P)+ KsB*PB+ N)Kp.

Proof. First note that (B*PB+ N) € GT[H'| for any P € BT[H] since N € Gt[H'], so that
Kp € B[H, H'] is well defined. A trivial but somewhat lengthy algebraic manipulation leads
to

Fh(P)+ K*NK = Fl . (P)+ KpNKp + (K — Kp)*(B*PB + N)(K — Kp)
for any K € B[H, H']. Thus (a) implies (b). Moreover, recalling that F# = ]ﬁgo, we get:
(b) implies (c) trivially (set K = O in (b)) and, according to the above identity with K = O,
(c) implies (a). 0O

Proposition 2. Toke H, H', B € B[H',H], and K € B[H,H'] arbitrary. Suppose
r(Fhe) <1 If

(6) K*K = P — F#(P)
holds for some P € BT[H], then r(F#) < 1.
Proof. First note that (recall: Fgx = F — BK)
Fpr(P)=F(P) - Fpx P(BK)" — (BK)PFg, — (BK)P(BK)"

for any P € B[H| and K € B[H,H']. Now take Py € B [H] and o > 0 arbitrary, and
consider the sequences {P; € B[H]; ¢ > 0} and {P; € B[H]; i > 0} recursively defined as
follows.

Piy1 = F(P) = Fx(P;) + Fpx Pi(BK)" + (BK)P;F} ) + (BK)P;(BK)",

P =(1+4a)Fpk(P) + (1+a ") BK)P,(BK)", By = P,

Recall that Bi[H] and BY[H] are invariant under F € B[B[H]], and so are they under
T € B[B[H]] and Fpx € B[B[H]] (cf. [7]). Thus P; € B{[H] and P; € B{ [H] for every
7 > 0 by induction. Moreover, for each 7 > 0,

)

O<P<P.
Indeed (recall: Fpx(P) = Fpx PFj + T (P) for all P € B[H])
O < (OZ%FBK - Oé_%BK> P; (OZ%FBK - Oé_%BK>* + a7 (P;)
= (1+a)Fpr(Pi — B) + Piy1 — P,
so that (1 + a)FBK(ﬁi —P) < Z3i+1 — Piy1, and hence O < ]3Z — P;, for every 7 > 0 by

induction. Thus R
P11 < [|Pil|a
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for each i > 0, since O < tr(T) = ||T||; for any T € Bi"[H] and tr : By[H] — ' is linear.
However, by setting

Uy=Py and Uy =(1+a YBK)P(BK)"

in Bi"[H], it follows that

7

P = Z(l + Ck)jf%K(Ui—j).

J=0

Therefore

12 < S| [+ )F ]| 1Tl
5=0

for every i > 0, since ||Fh . (T)]1 < H]:g}](H ||T||; for each j > 0 and every T' € B;[H]
(cf. Property Ps in [7]). If T(ng) < 1 then we can take a > 0 small enough so that
r(1+a)Ff) = (1+a)r(F) < 1 and hence (see e.g. [4])

3 [+ 07t | < .
§=0

Moreover, if (6) holds for some P € BT [H], then

|IKP;K*||; = tr(KF? (Py)K*) = tr(K*KF? (Py))

= tr(PFI(Ry)) — te(F#(P)FI(Ry)) = tr(PF (Py)) — tr(PFFH(Ry))

= tx(PIFI(Py)P¥) — (PR FI TN (R PF) = ||[PEF (Po) P ||y — || PEF/H (Py) P3|y
for each j > 0 (cf. Proposition P4 in [7]); so that

S Ujalh € @A+ a HIBIPY KPR K|
§=0

j=0
= (1 +a IBIP (1P RPE || — |PEF (P PE |1 )
< (1+a )|BIFIPE AP |

for every n > 0. Since {||[(1 +a)f§K]jH_; j > 0} € 4 and {||Uj]l1; 7 > 0} € £, their
convolution (or their Cauchy product) {3 %_, [|[(1 + ) Fi VN Ui—jll; @ > 0} lies in £ as
well (cf. [2, p.77]). Therefore

Y lIBh < oo,

i=0

so that

S NF P =D IIPill <D lIPilh < o0
=0 =0 =0
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for all Py € Bi"[H]. Thus 7(F#) < 1 (cf. Proof of Lemma 2 in [7]). O

Proposition 3. Toke H, H', B € B[H',H], and K € B[H,H'] arbitrary. Suppose
#
r(Fhy) < 1.

(a) For each Q € B[H] there exists a unique solution P € B[H] to the Lyapunov-like equation
(7) Q=P — Fhu(P).
(b) Take Q € BY[H] and P € B[H] arbitrary. If (7) holds then P € B*[H].

Proof. (a) Take Q € B[H] arbitrary, and note that

Q- Q=Y (Fh@ - @)

1=0
S FELQ) - (zf§;<@>)
1=0 1=0

for every n > 0, since ng : B[H] — B[H] is linear. Suppose r(ng) < 1. Then, as
is well known, {1 , Fg;( € B[B[H]]; n > 0} converges in B[B[H]| (see e.g. [1], [7]).
Thus, given Q € B[H], {>_], Fﬁ;(@) € B[H]; n > 0} converges in B[H] to, say, Py =

POy fﬁ;(@) € B[H], and hence fﬁ;(@) — O in B[H] as n — co. Therefore, according to
the above equation,

Q = Py — Fhi(Po),

since Fji, : B[H] — B[H] is continuous. That is, Py € B[H] is a solution to (7). On the
other hand, if P € B[H] is a solution to (7) for a given @ € B[H], then

S @ =Y (FhP) - Fi (7)) = P ()

i=0 1=0

for every n > 0. Therefore, since r(fgéK) <1,

N FEeQ) - P
1=0

and hence P = Py by uniqueness of the limit.

H n+1

4 n+1
P < |75

||P|]| =0 as n — oo,

(b) If (7) holds for some @ € BT[H| and P € B[H], then

n k3 n+1
0<Y Fhu(@Q=P—Fhy (P)
=0
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for each n > 0, since B*[H] is invariant under F}i, : B[H] — B[H] (cf. [7]). Thus
Fhc (<P

for every n > 0. Since r(}"ﬁK) < 1 it follows that fg; — O in B[B[H]] as n — oo, and
hence fﬁ;(P) — O in B[H] as n — oco. Therefore O < P. O

Proposition 4.  Suppose there exists B € B[H] such that r(]:gM) < 1 and take Q € BT[H]
arbitrary. If

(8) M+Q+K*NK =P — F}.(P)
holds for some P € BT[H], then r(Fi,) < 1.

Proof. Consider the separable Hilbert space H obtained by the following direct (orthogonal)
sum: H=H & H & H'. Now set

K=| Q= | ¢B[H, H

EZ(EM% o) —BN—%)GB[E'I,H].

Since BK = BM — BK we get Fpi ~BK=F— §M, and hence

Here (}—gK)fg’;? € B[B[H]] is obtained from FEEK as ]—"gK is itself obtained from F#. In

other words, o -
(Fi)57(P) = (Fpix — BK)*P(Fpx — BK) + T#(P)

for all P € B[H]. Therefore, since T(FgM) <1,

Moreover, if (8) holds for some P € BT[H], then
K*K = P— F#,.(P),

for K*K = M + Q + K*NK. Thus r(}"gK) < 1 according to Proposition 2. O
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7. MAIN RESULTS

Under appropriate conditions a solution to the quadratic stochastic optimal control prob-
lem posed in (2) is given in terms of the unique nonnegative solution to the associated Riccati-
like operator equation. This will be properly stated in the theorem below whose proof relies
on the following lemma.

Lemma. Suppose there exists B € B[H] such that T(ng) < 1. If T # 0 then there exists

a unique nonnegative solution P € BY[H] to the Riccati-like equation
(9) M = P — F#(P) + F*PB(B*PB + N) ' B*PF.
Moreover (B*PB + N)~"'B*PF € I'p.

Proof. Consider the above hypothesis. Claim: for each ¢ > 0 there exists P; € BT[H] and
K; € I'g such that

(10) M+ K;NK; = P, — F},. (P)).

Indeed, take Ky € I'g arbitrary so that T(ngo) < 1. Thus, according to Proposition 3,
there exists a unique Py € B[H| which in fact lies in BT[H]| such that

M + KiNKo = Py — Fl (Po).
Hence the claimed result holds for ¢ = 0. Suppose it holds for some ¢ > 0. Set
Kiy1 = (B*PiB+ N) 'B*P,F

in B[H, H']. By adding (K; — K;+1)*(B*P;,B+ N)(K; — K;11) at both sides of equation (10),
and recalling that (b) = (a) in Proposition 1, we get

M+ (K; — Ki)"(B*PBB+ N)(K; — Kip1) + K \NKip1 = Py — fﬁK (F;).

i1

Thus, according to Proposition 4, r(ngM) <1 (i.e. K;41 € I'p). Therefore, by Proposition
3, there exists a unique P;41 € B[H] which in fact lies in BT [H] such that

M+ K\ NK;y1 =Py — FgKHl(PiJrl);

which concludes the proof of the claimed statement by induction. Note that from the above
two equations we get

O<(Ki—Ki1)"(B"PBB+ N)(K; — Kiy1) = (P, — Piy1) — ]:gKH] (P; — Piy1)

for every ¢ > 0. Hence (P; — Pi41) € BT[H], since r(ngH]) < 1, for each i > 0 (cf.
Proposition 3-b). Thus {P;; ¢ > 0} is a monotone bounded sequence of self-adjoint operators
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(actually a nonincreasing sequence of nonnegative operators), so that it converges strongly
(see e.g. [9, p.79]). Let Py, € B[H] be its strong limit which in fact lies in BY[H] because
BT[H] is weakly closed in B[H]|. That is

(11) P, = P,

so that B*P,FF >+ B*P. F, F*P,B >+ F*P, B and (B*P,B + N) - (B*PB + N).
Since N € G*[H'] there exists v > 0 such that v/ < N < B*P;B+ N and hence ||(B*P;B +
N)7Y| < 471, for every i > 0. Therefore the strongly convergent sequence of invertible
operators {(B*P;B + N); i > 0} has a bounded inverse sequence {(B*P;B + N)~!; i > 0}.
Thus (B*P;B + N)~! -2 (B*PsxB + N)~! (see e.g. [9, p.105]). Hence
Kiy1 = (B*PiB+ N)'B*P,F -+ K., := (B*Ps B+ N)"'B*P,F,
Kf,=F'PB(B*P,B+ N)™' = K} = F*P,,B(B*P-xB+ N)™ ',

so that
(12) KINK; = K* NK.,
(F — BK,)* P,(F — BK;) —> (F — BK..)* P (F — BK..)
(see e.g. [9, p.80]). The above convergence leads to
(13) Fhic,(P) = e (Pxc)

because 77 (P;) — T#(Ps). Indeed 7# € B[B[H]] is the limit in B[B[H]] of {7,/ €
B[B[H]]; n > 1} which is defined as follows: for each n > 1

TH(P)= Y (Ceser)AjPA;
k=1

for all P € B[H] (cf. [6]). Thus T.7(P;) - T,7(Ps) for every n > 1 (i.e. ||T,7 (P;i—Px)h|| —
0 as ¢ — oo for every n > 1 and all h € H). Hence, by the triangle inequality in H,
0 < limsup ||7#(P; — Px)h|| < limsup||(Z,* — T#)(P; — Px)h||

+limsup || (P — Poo)hl| < [|TF — T#||sup||P; — Pec|| |||
i—00 i>0
for every n > 1 an all h € H. Therefore, since ||Z,# — T#|| — 0 as n — oo and sup;> ||P; —
Py|| < oo (for P; =%+ P.), it follows that ||[T#(P; — Py )h|| — 0 as i — oo for all h € H
(i.e. T#(P;) - T#(P4) as claimed above). Then, according to (10)—(13), Py, € BT [H] is
a solution to

(14) M+ K} NKy = Poo — F e (Ps)
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so that r(}"gK%) <1 (i.e. Ky € T'p) according to Proposition 4. Moreover P,, € BT [H]|
is a solution to (9), for (a) = (c¢) in Proposition 1. On the other hand, if P € B*[H] is a
solution to (9), then it is a solution to

(15) M+ KpNKp =P — Fjy, (P)
(cf. Proposition 1: (¢) = (a)) with
Kp:=(B*PB+ N)"'B*PF

in B[H, H']. Hence r(ngp) < 1 (i.e. Kp € I'g) by Proposition 4. From (15) and (14) it
follows that

M+ K NKo = P—Fliy (P)+ (Koo — Kp)*(B*PB + N)(Koo — Kp),

M+ KpNKp = Po — Fhre o (Pos) + (Kp — Koo)*(B*Pou B+ N)(Kp — Koo),

respectively, for (a) = (b) in Proposition 1. By subtracting the above two equations from
(14) and (15), respectively, we get

O < (Koo — Kp)(B*PB + N)(Koo — Kp) = (Px, — P) = Fiiye (P — P),
O < (Kp — Koo)(B*Po B+ N)(Kp — Koo) = (P — Pog) — Fhy, (P — Po).

Therefore O < (P, — P) < O according to Proposition 3-b. Thus P = P,,. O

Definition. Take a separable Hilbert space Hy and L € B[H, Hy| arbitrary. The pair (L, F)
is detectable if there exists B € B[Hy, H| such that r(}"gL) < 1.

This is the natural extension to discrete bilinear models as in (1) of the usual definition
of detectability for discrete linear models: a pair (L, F') is detectable, with L € B[H, Hy]

and F € B[H] for some separable Hilbert space Hy, if there exists B € B[Hy, H] such that
r(F — BL) < 1. In fact, if the discrete bilinear model in (1) is particularized to a linear one
(e.g. by setting Ar = O for every k > 1), then ]:gL(P) = (F — BL)*P(F — BL) for all
P € B[H] so that (see e.g. [1]) r(FgL) = r((F — BL)*)? = r(F — BL)? = r(Fgp ). It is
worth noting that the identity r(ng) = r(Fpk), which holds for the linear case, does not
necessarily hold for the bilinear case (cf. Remark 1).

Using the above definition and applying the preceding lemma we get the following full
statement for the solution to the quadratic optimal control problem posed in (2), which mirror
its linear counterpart (see e.g. [3]).

Theorem. If (M,F) is detectable and I'p is not empty, then there exists Kp € I'p such
that

JrA(we) (Kp) = KHéIIIlB JA(W) (K).
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Moreover Kp = (B*PB + N)™'B*PF where P € BT[H] is the unique nonnegative solution
to the algebraic Riccati-like operator equation

M = P — F#(P) + F*PB(B*PB + N) ' B*PF,
and Jaov,,)(Kp) = ||D*PD]|.

Proof. The previous lemma ensures the existence of a unique nonnegative solution P &€
BT[H] to the above Riccati-like operator equation, and that Kp := (B*PB+ N)"'!B*PF €
I'p. Thus

M+ K*NK = P — F,(P) + (K — Kp)*(B*PB + N)(K — Kp)
for any K € B[H, H'] (since (¢) = (b) in Proposition 1), so that
(16) tr(Qi(M + K*NK)) = tr(Q:P) — tr(QiFfi 1 (P))
+ tr(Qi(K — Kp)"(B*"PB 4+ N)(K — Kp))
for every i > 0 and any K € B[H, H'|. However (cf. Property P, in [7])
tr(QiP) — tr(QiFfc (P)) = tr(QiP) — tr(Fpx (Qi) P)
= tr(QiP) — tr(Qi+1P) + tr(DRi11 D" P)
for every i > 0 and any K € B[H, H'| whenever v € V,, according to (3-a). Hence
< D (tr(QiP) — tr(QuF e (P)) = tr(QoP) — lim tr(QuP)+ Y tr(DRs1 D*P)
=0 =0

= tr(DRyD*P) + Ztr(DRiD*P) = tr(D*PDR;) <||D*PD|| |[R|}x

for any K € I'g and R € A(Vy), since lim,, o tr(@Q,P) = 0 whenever K € I'p and v € V.
Actually 0 < tr(Q,P) < ||@Qn]]1]|P]|| for every n > 0 and ||@Q,||l1 — 0 as n — oo because
Q := {Q; € B [H]; i > 0} € ¢;(B{ [H]) whenever K € ' and v E Vw. Indeed (cf. (3-b)

|Qillr = tr(Q;) = Z; Otr(]:]gKJ-(DR D*)) = Z; otr(DR;D* ]:BK "(I)) for every i > 0, so

that [|QIli = 32, [1Qlli < (IDI2 %, [|Ff kDRI for K € T and R € A(Vw), by
using the very same arguments put forward in Section 4. Thus Q € ¢, (B; [H]) and we can
also ensure convergence for the series

(18) O<Ztr (K — Kp)*(B*PB + N)(K — Kp))
< II(K—KP) (B*PB+ N)(K — Kp)|| [|Qllx

(H(K Kp)"(B*PB + N)(K - Kp)|| |ID1? ZHF KH> IR
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whenever K € I'g and R € A(Vy,). Therefore, according to (5) and (16)—(18),
Jr(K) =) tr(Qi(M + K*NK))
=0

= i tr(DR; D* P) + i tr(Q:(K — Kp)*(B*PB + N)(K — Kp))
1=0 =0

< (HD*PDH +[[(K = Kp)*(B'PB+ N)(K — Kp)|| |IDII*Y H%H) IR}
=0
for every K € T'p and R € A(Vy ). Hence

itr(DRlD*P) == JR(KP) S JR(K)

for any K € I'p and R € A(Vy ), and (cf. (4-b))

Jr(K)
A, (K) = sup
rom )= s TR

< ||D"PD|+ (K — Kp)"(B"PB+ N)(K - Kp)| IDI*Y" | 7|
=0

for every K € I'g. Thus
Yoo tr(DR;D*P)
sup
O#REA (VW) [IR][x

= JAw) (KP) < Jr(wy) (K)

for all K € I'g, and
I (Ep) < ||D*PD|.

To complete the proof we still need to verify that |[D*PD|| < Jyy,)(Kp). For that we
proceed as follows. Take h € H"” with ||h|| = 1 arbitrary, and consider an orthonormal basis
{hx; k > 0} for H” such that hg = h. Now take R(h) = (Ro(h),0,0,---) from A(Vy)
with Ro(h) = diag(1,0,0,---) (i.e. take R(h) = {R;(h) € By [H"]; i > 0} € A(Vy) where
R;(h) = O for every i > 1 and Ry(h) = (h o h)). Note that

IR =Y [[Ri(h)[[1 = [[Ro(h)|[r = tr(Ro(h)) = > (Ro(h)hi; i) = 1,
1=0 k=0

and

i tr(DR;(h)D*P) = tr(Ro(h)D*PD) = i(Ro(h)D*Pth; hi)
1=0 k=0

= " (D*PDhy; Ro(h)hy,) = (D*PDho; ho) = || P Dh|[*.
=0
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Hence

> tr(DR;D*P i i .
Jawe)(Kp) = sup 20 (R ) > sup ||P2Dh||? = ||P2D|* = ||D*PD||.
O#REA (V) IR {1 I|h||=1

O

Remark 2. We actually have proved a bit more than the theorem statement, viz.

Jr(Kp) = min Jr(K) = iz:;tr(DRiD*P)

for any R € A(Vs). Therefore, for any v € Vi, Kp minimizes ||z|s,(1gn) over all K € I'p.

8. CONCLUDING REMARKS

In this final section we shall consider a recursive approximation scheme for the opti-
mization problem as in Remark 2. Precisely, we shall show how the previous time-invariant
infinite-time optimal control problem can be strongly approximated by a sequence of time-
varying finite-time ones. This, which will be stated below as a corollary to the preceding
theorem, again mirror the linear case.

Take an arbitrary integer n > 1. Consider a time-varying version of (1) with K €
B[H, H'] replaced by K; € B[H, H'],

Ao+ ) (wiser) Ay
k=1

Tit1 = z; — BK;z; + Dviqq, Zo = xo = Dy,

for each i = 0,---,n — 1; whose finite sequence {Q; = £(F; 0 7;) € B [H]; i =0,---,n} of
state correlations is such that

Qit1 = Fpr,(Qi) + DR D*, Qo= Qo= DRyD"
(see Section 3). Now, given v € Vy, and W € BT [H| arbitrary, set

n—1
. i=0

n—1

1=0

(cf. eq. (5)). Next consider a finite sequence in B[H| backward recursively defined as follows:
Py (n,n) =W,

(20) Py (i,n) = Flye, oy (Pw (i + 1,n)) + K} (n) NEK;(n) + M,
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with K;(n) € B[H, H'] given by
Ki(n) = (B*Pw (i +1,n)B + N) 'B*Py (i + 1,n)F,

for each ¢ = 0,---,n— 1. It is readily verified by induction on i that Py (i,n) € BY[H] (since
BT[H] is invariant under ]—‘gK : B[H] — BI[H] for any K € B[H,H'] - cf. [7]) and that
K;(n) is well defined (i.e. (B*Pw (i +1,n)B + N) € GT[H']), for every i =0,---,n — 1.

Corollary. Take R € A(Vyw) and W € BT[H] arbitrary. For each n > 1 set Ji (n) as in
(19) and consider the finite sequence { Py (i,n) € BY[H]; i =0,---,n} defined in (20). Then

JW (n Ztr (DR;D* Py (i,n)).
1=0

Moreover, under the assumptions of Lemma,
Py (i,n) = P as n — oo

for each i > 0, where P € BT[H] is the unique nonnegative solution to (9), and

JW (n) — i Jr(K) = Jr(Kp) Ztr (DR;D*P) as n — o0.
=0

Proof. Take n > 1 arbitrary. Recalling that (a) = (b) in Proposition 1 we get from (20)
that
M + K;NK; = Py (i,n) — Fh (Pw(i+1,n))

+ (K — Ki(n))"(B*Pw (i + 1,n)B + N)(K; — K;(n))

for each ¢ = 0,---,n — 1. Therefore
n—1 N N N
D tr(Qi(M + K NK;)) = tr(QoPw (0,n)) — tr(Qn P (n,m))
1=0

n—1
+ > tr(DR; 1 D* Py (i + 1,n))
i=0
n—1 R
+ Z tr(Qi (K; — K;i(n))*(B*Pw(i+ 1,n)B* + N)(K; — K;(n))
i=0
(reason: recall that (cf. Property P4 in [7]) tr(@ij’:g& (Pw (i+1,n))) = tr(Fpk, (Q:) Pw (i +
1,m)) = tr(Qis1 Pw(i+ 1,n)) — tr(DR; 11 D* P (i + 1,n))). Since Py (n,n) = W € B*[H]
and QO DRyD*, it follows that

JW (n Ztr (DR;D* Py (i, n))
=0
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according to (19). Now note from (5) and (19) that, for W = O,

(21) 0<Jq(n) <JR(n+1) < Jof Jr(K) = Jr(Kp),
B
so that
n n+1 oo
0< > tr(DR;D*Po(i,n)) < Y _tr(DR;D*Poli,n+1)) < Y tr(DR;D*P),
=0 =0 =0

where P € BY[H] is the unique nonnegative solution to (9), according to Remark 2. From
now on take ¢ € [0,n) arbitrary. Recall that both P and Py (i¢,n) do not depend on H”,
D € B[H",H] and R € A(Vy) C (B [H"]). In particular, for H” = H, D = I, and
R=(0,--,0,(ror),0,---) € A(Vw) with null operators except at the ith position and
r € H" arbitrary, the above inequalities lead to

O < Po(i,n) < Po(i,n+1) <P

(reason: tr((ror)L) = tr(ro L*r) = (r; L*r) = (Lr;r) for all r € H" and L € B[H"], so that
O < L whenever 0 < tr((ror)L) for all r € H"” - see e.g. [5]). Hence

Po(i,n) == Po(i,o0) as n — oo

for some Pp(i,o00) € BT[H], since {Po(i,n) € BY[H]; n > 1} is a monotone bounded
sequence of self-adjoint operators and BT [H| is weakly closed in B[H] (cf. proof of Lemma).
Also note that Py (n — j,n) = Pw(n+1—j,n+ 1) for every j = 0,---,n, which is readily
verified by induction on j. In particular, for j = n — i, Py (i,n) = Pw(i+ 1,n+1). Thus

M + K7 (n)NK;(n) = Pw(i,n) — ngi(n)(PW(i,n —1)),

Ki(n) = (B*Pw(i,n —1)B+ N)"'B*Py(i,n — 1)F,

for each n > 2, according to (20). Therefore (cf. proof of Lemma)

M + K;i(00)*NK;(00) = Po(i,00) = Flie () (Poi,0)),
where K;(00) € B[H, H'] is given by

Ki(o0) = (B*Po(i,00)B + N)"'B*Py(i,00)F.
Hence Py (i,00) € BT[H] is a solution to (9), for (a) = (¢) in Proposition 1, so that
Po(i,00) = P

by the preceding lemma. Next note that

(22) IR (n) < JX (n) < Jr(K) + tr(Q, W)
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since Jy (n) < Z?:_Ol tr(Qi(M + K*NK))+tr(Q,W) < Jr(K) 4+ tr(Q, W) for any K € I'p,
according to (5) and (19). In particular, for K = Kp it follows from Remark 2 that

> tr(DR;D*Po(i,n)) < tr(DR;D* Py (i,n))
=0 i=0
<Y «(DRDP)+Y (DR@*??Z(W)) .
i=0 i=0
To verify the second of the above inequalities recall that (cf.  (3-b)) tr(Q.W) =
Sttt (Fp (DRDOW) = S0, tr(DRiD*Fgli_l(W)). Therefore, as we have already
verified in this proof, '
Po(i,n) < Pw(i,n) < P+ Fh, (W).

Since Pp(i,n) — P and Fg;;i — O in B[B[H]], as n — oo (for Kp € I'p), it follows that
Py (i,n) = P as n — oo.

Thus sup,so|[Pw(in)l| < oo, [|P(i,m)z@)|[> — [[Przw)|® as n — oo and
[P (i, n)x(w)|[* < sup,q||[Pw(i,n)||]|z(w)|[* almost everywhere on Q for any = € H.
Hence the Lebesgue dominated convergence theorem (see e.g. [2, p.151]) ensures that
1P (i,n)z||3, — ||P%x||3{ as n — oo for every x € H. Then (recall: ||L%x||${ =
tr(E(x o z)L) for every x € H and L € BT[H]|) tr(DR;D* Py (i,n)) — tr(DR;D*P) as
n — 00, so that (cf. Remark 2)

lim  lim Y tr(DR;D*Pw(i,n)) = Jr(Kp).
=0

From (21) {JR(n); n > 1} converges and

> tr(DR;D*Po(i,n)) < JR(n) < Jr(Kp)
=0

for every m < n. Therefore
JQ(n) — Jr(Kp) as n — oc.
Since tr(Q,W) — 0 as n — oo for any K € I'p (cf. proof of Theorem) it follows, from (22)

with K = Kp, that
JY (n) — Jr(Kp) as n — oo 0
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