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1. NOTATION

Let B[X] be the Banach algebra of all bounded linear operators from a Banach space
X into itself. Both the norm in X and the induced uniform norm in B[X] will be denoted
by || ||, and r(-) will stand for the spectral radius in B[X]. Throughout the paper we
assume that H is a separable nontrivial complex Hilbert space, with inner product
(;-). Let T* € B[H] be the adjoint of T € B[H], and set |T| = (T*T)'/? € B*[H],
where BT[H] := {T € B[H] : 0 < T} is the weakly closed convex cone of all self-
adjoint nonnegative operators in B[H]. Let Bo[H| be the class of all compact operators
from B[H|. If T € By [H] (or equivalenlty, |T'| € Boo[H]), let {\x; & > 0} be the
nonincreasing nonnegative null sequence made up of all eigenvalues of |T'|, each nonzero
one counted according to its multiplicity, and set ||T||; = > oo Ak. Let Bi[H] :=
{T € B : ||T|]1 < oo} denote the class of all nuclear operators from B[H], and set
Bi'[H] = Bi[H|NB*[H]. ||-]|1 is a norm in By [H] and (B;[H], || ||1) is a Banach space.
Indeed, B;[H] is a two-sided ideal of B[H], so that max{||LT||1, ||TL||x} < ||L]| [|T|h
for every T' € Bi[H]. The trace of T € By[H] is defined as tr(T) = > = (Tex; ex),
which does not depend on the choice of the orthonormal basis {ex; k > 0} for H,
and [tr(T)| < tr(|T]) = ||T|]1 for every T € By[H]. Finally, for any f,g € H, let
(f o g) € B1[H] be defined as (f o g)h = (h; g)f for all h € H, so that (f o f) € B] [H].
(For a systematic presentation on nuclear operators, the reader is referred to [5, 13].)

2. INTRODUCTION

Consider a discrete bilinear system operating in a stochastic environment, whose
model is given by the following infinite-dimensional difference equation.

(1) Tit1 = [AO + Z(wi; €k>Ak] Tk + Uiy, To = Uo,
k=1

where {A; € B[H]; k > 0} is a bounded sequence, {er; k > 1} is an orthonormal
basis for H, and {z;; i > 0}, {w;; i > 0} and {u;; @ > 0} are H-valued second-order
random sequences. Let us make the following simplifying assumptions on the stochastic
environment (a more general setup can be found in [12] but the one we set below will
suffice our present needs): {w;; ¢ > 0} is an independent sequence which is stationary
in expectation and correlation, and {u;; i > 0} is a zero-mean independent sequence
which is independent of {w;; i > 0}. Let s € H, S € B [H] and C := S —sos € B [H]
denote, respectively, expectation, correlation and covariance associated with the random
sequence {w;; i > 0}. Let {R; € B{[H]; i > 0} and {Q; € B [H]; i > 0} stand for
the correlation sequences associated with {u;; ¢ > 0} and {z;; ¢ > 0}, respectively (for
a formal definition of expectation, correlation and covariance of H-valued second-order
random variables, see e.g. [2, 9]). It has been shown in [10] that the state correlation
sequence {Q;; i > 0} envolves as follows.

(2) Qi1 = F(Qi) + Riy1, Qo = Ro.



2

Here, F € B[B[H]] is given by F(Q) = FQF* + 7(Q) for all Q € B[H], with F :=
Ao+ 0% (s;er)Ag in B[H], and T € B[B[H]] defined by

T(Q) = (Cegyer)Ar Q Aj

1

“%M8

for all @ € B[H|; where the above convergences are in the uniform topologies of B[H]|
and B[B[H]], respectively. By setting Fy := F and Fy := Ay for every k > 1, the
operator F € B[B[H]| can be concisely written as

f(Q) Z (Ceg,ek)Fk Q Fg

for all Q@ € B[H]. Here, {eg = 180, e, = 0®ey; k> 1} is an orthonormal basis for the
Hilbert space H =@ ® H, and C := (16 C) € B; [H]; with @& denoting direct orthogonal
sum (see e.g. [3]). In the sequel, we shall also need to define operators associated with
T and F, say 7% € B[B[H]] and F# € B[B[H]], according to the following rule: for
all Q € B[H],

= ) (Cesier)A; Q Ay, = Y (Ceyex)Fy Q Fy.
k=1 ke 6=0

The mean-square stability problem for the infinite-dimensional bilinear model (1)
is concerned with the asymptotic behaviour of the state correlation sequence whose
evolution was described in (2) (see e.g. [10] and, for continous-time versions, [4, 15];
where the role played by mean-square stability in stochastic system theory is addressed
as well). Precisely, it is the problem of finding conditions on the operator F which
ensure that the following definition is fulfilled.

Definition. Consider the preceding setup. The model (1) is (uniformly) mean-square
stable if the state correlation sequence {Q;; i > 0} converges in B[H]| to a correla-
tion operator (i.e. to an operator in B; [H]) whenever the input correlation sequence
{R;; i > 0} converges in B[H| to a correlation operator.

A sufficient condition for mean-square stability was given in [10]: If there exist
real constants o > 1 and 0 < a < 1 such that (i) ||F!|| < o o' for all i > 0 and (ii)
max{||T||,||7#||} < (1 — a?)/o?, then the model (1) is mean-square stable. Actually,
the condition (ii) occuring in [10] was defined differently but should have been defined
as above. It imposes that 7 and 7# are both strict contractions, which may be thought
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of as too stringent a requirement for stability purposes. The aim of the present paper
is to provide a condition for mean-square stability without requiring that 7 or 7# are
contractions. This will be established in Section 4, by using the results of Section 3.
Precisely, we shall show that max{r(F),r(F#)} < 1 implies mean-square stability as
defined above.

3. INTERMEDIATE RESULTS

Given an arbitrary bounded sequence of operators {Fy, € B[H]; k > 1}, and a
nonnegative nuclear operator C € By [H], set F,, € B[B[H]] as follows. For each n > 0,

n

Fa(Q) =Y (Ces; ex) FrQF;

k,0=0

for all @ € B[H], where {ex; k > 0} is an orthonormal basis for H which ensures that
the sequence {F,; n > 0} converges in B[B[H]]. The existence of such an orthonormal
basis, which may depend on the operator C' but not on the bounded sequence {Fy; k >
0}, has been established in [10]. Let F € B[B[H]] be the limit of {F,; n > 0}, and

write

= Y (Cesier)FrQF;

k=0
for all Q € B[H]. Now set F# € B[B[H]| as follows. For each n > 0,

n

FHQ) = ) (Ceser)FQF;

k,6=0

for all Q@ € B[H]. Since {F,; n > 0} converges uniformly for an arbitrary bounded
sequence {Fy; k > 0}, and since boundedness for {Fy; k > 0} and for {F}'; k> 0} are
equivalent, it follows that {F#; n > 0} also converges in B[B[H]|. Let F# € B[B[H]]
be its limit, so that

oo

FHQ) = ) (Ceser)FQF;

k,0=0

for all @ € B[H]. Propositions (P1) to (P5) below comprise the properties of the
operators F and F7# that will be needed in the sequel. Note that, if any of them holds
true, then it does hold for F interchanged with F7.

Propositions. For every integer i > 1,

(P1) FYB*[H]) € BF[H],



(Py) |17 = 17D,

(P3) F'(Bi[H]) C Bi[H],

(Pa) tr(DF(Q)) = tr(QF#(D)), D€ B[H|,Q € Bi[H],
(P5) sup |7 (Q)]x = [|lF#]].

lIQl1=1

Proof of (P1). Let {f;; 7 > 0} be an orthonormal basis for H made up of eigenvectors
of C' € Bfr [H] (whose existence is ensured by the spectral theorem for compact normal
operators - see e.g. [l p.438]). For each j > 0 let v; > 0 be the eigenvalue of C
associated with the eigenvector f;. Take an arbitrary integer n > 1, and set Fj(n) =
>or_o(fjiex)Fy in B[H] for each j > 0. Take g € H and h € H arbitrary. It has been
shown in [3] that

(Fn = %(QF; (n)g; Fj (n)h)

7>0

for all @ € B[H]. Therefore, by induction on i we get

B) (FA@Qgh) = Y v QF(n)- - F; (n)g; Fj(n) - F},(n)h)

jl 77]220

for every integer ¢ > 1 and all Q € B[H]. Thus, if Q € BT[H], then

(4) <f’;’LL(Q)h7 h> = Z Vit Vi Q1/2F;(n)--~F;1(n)hH2,

J1s3: 20

and hence F.(Q) € BT[H] for every i > 1. Since F,, — F as n — oo in B[B[H]], it
follows that 7! — F' as n — oo in B[B[H]], and so F!(Q) — F*(Q) asn — oo in B[H]
for every Q € B[H] and each i > 1. Therefore, F'(Q) € BT [H] whenever Q € BT[H],
because BT [H] is closed in B[H]. 0

Proof of (Py). Take g € H, h € H, n > 0, and ¢ > 1 arbitrary. By using the Schwarz
inequality three times, it follows from (3) and (4) that

(Fe@gh) < QI Y. 77

]17 ) 7]2>0

< IQINFn(Dgs )2 (Fr(Dhs )2 < 1QIIFL (DI lgl] []A]

Fy.(n) - Fj (n)g[ ||F, (n) - - Fj, (n)hl|

for every Q € B[H]. Thus, ||F:|| = ||F:(I)]], since

IF DI < |7 = sup [[F(Qll= sup  sup  [(F(@)g:h)| < [[FL(D)I-
1QlI=1 1QlI=1 Ilgll=IIAll=1
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Therefore, [|7°]| = [|7*(1)[|. Indeed, [|7;|| — [|F*|| and |77 (D)|| — [|F*(D)]], because
.7:’—>]:"inB[ [H]],asn—>ooforeachz>1 O

Proof of (P3). Take @ € By[H] arbitrary. First note that, since B1[H] is a two-sided
ideal of B[H], DF,,(Q) € B1[H] and QF# (D) € B,[H] for any D € B[H] and every
integer n > 0. Since tr: B;[H] — @ is a linear functional, and since

(5) tr(DE) = tr(ED)
for every D € B[H] and E € B;[H], we get by the very definition of F,, and F,# that

(6) tr(DF.(Q)) = tr(Q F*(D))

for each n > 0 and every D € B[H]|. Now, take arbitrary integres n,v > 0, and
consider the polar decomposition Fp,4,(Q) — Frn(Q) = V|Fnt.(Q) — Fr(Q)|, where
V =V,.(Q) € B[H] is a partial isometry, so that |F,,1,(Q) — Fn(Q)| = V*(Frnt(Q) —
Fn(Q)) (see e.g. [6 pp.74, 262]). From (6) we get

|1 Frs(Q) = Fu(@)]l1 = tr(V* Frp (Q)) — tr(V*F(Q))
= tr(QF 1, (V") — tr(QFF (V™) < |QIL |17, — FE.

by linearity of the trace and recalling that a partial isometry is a contrac-
tion (so that ||[V*|| < 1). Thus, since {F#; n > 0} converges in B[B[H]],
lim,, 00 SUP,~q || Fntr (@) — fn(Q)Hl 0. Hence, {F,(Q); n > 0} converges in the
Banach space By [H|. However, {F,,(Q); n > 0} converges to F(Q) in B[H]. Therefore,

(7) Fr(Q) — F(Q) as n — oo in Bi[H],

since convergence in By [H] impleis convergence in B[H], clearly to the same limit. Thus
F(Q) € B1[H], so that By[H] is invariant under F, and the inclusion in (P3) is trivially
verified by induction. a

Proof of (P4). Take D € B[H| and Q € B;[H] arbitrary. Convergence in (7) implies
that
DF,(Q) — DF(Q) as n — oo in Bi[H].

Moreover, since {F# (D); n > 0} converges to F# (D) in B[H],
QF#(D) — QF# (D) as n — 0o in Bi[H].
Since tr : B1[H] — @ is continuous, the above two convergence results lead to

(8) (D F(Q)) = tr(Q F¥(D)),
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according to (6). Thus, (P4) holds for ¢ = 1. Suppose it holds for some ¢ > 1. Then,
since F(Q) € B1[H], and according to (5) and (8),

tr(DFHH(Q)) = tr(F(Q)F* (D)) = (F# (D) F(Q)) = tr(Q F# (D)),

which completes the proof by induction. O

Proof of (P5). Take Q € By[H] and i > 1 arbitrary. Consider the polar decomposition
FH Q) = V;| F(Q)]|, where V; = V;(Q) € B[H] is a partial isometry, so that |F*(Q)| =
V*FY(Q). From (Py) we get

[FQ)]l1 = tr(VFFH(Q)) = te(Q F*' (V) < [|Q[:||F#

Y

since ||V;*|| < 1. On the other hand, from (P4) and (5), by using the very definition of
trace, and according to the Fourier series theorem (see e.g. [1 p.155]), we have

tr(Fi(f 0 g)) = tr((f 0 g)F# (1)) = tr(F# (I)(f 0 g))

oo

=N FF NS o 9w h) = S (FF () f5 ) (b g) = (F* (1) f:.9)
k=0

k=0
for every f,g,€ H, and for any orthonormal basis {hy; k > 0} for H. Hence,
(FPD fr9)] < w(IF(fog)l) = IF(fog)lh,

for all f,g € H. Therefore, since ||f o g||1 = ||f]| ||g|| for every f,g € H,

IF¥ (D)= sup  [(FFD)f:i9) < sup ||F(Q)]h
1fll=Ilgll=1 Q=1

Finally, recall that ||F#'|| = ||F#'(I)|| (cf. (P3) with F replaced by F#). O

4. FINAL RESULTS

Given an operator sequence {R; € B[H]; ¢ > 0} consider another operator sequence
{Q; € B[H]; i > 0} recursively defined by a linear autonomous difference equation,

Qi+1 = F(Qs) + Rit1, Qo = Ro,
with F € B[B[H]] defined as in the previous section, whose solution is given by

Qi=) FI(Ry)

i=0
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for each i > 0. Hence, the operator sequence {Q;; i > 0} is BT[H]-valued and/or By [H]-
valued whenever the operator sequence {R;; j > 0} has the same properties, according
to propositions (P1) and (P3). As we have seen in Section 2, the above linear model
in B[H] describes the state correlation evolution for an infinite-dimensional bilinear
system if {R;; ¢ > 0} and {Q;; i > 0} are identified with input and state correlation
sequences, respectivelly (and hence restricted to be Bi"[H]-valued). The theorem below
shows that mean-square stability as defined in Section 2 is ensured whenever r(F) < 1
and r(F?) < 1. Before stating it we shall give equivalent conditions for 7(F) < 1 and
for r(F#) < 1 (further conditions for 7(F) < 1 were established in [3]).

Lemma 1. The following assertions are equivalent.

(a1) r(F) < 1.

(b1) {Q; € B[H]; i > 0} converges in B[H| whenever {R; € B[H]; i > 0} converges in
B[H].

(c1) {Q; € BT[H]; i > 0} converges in B[H| whenever {R; € BT[H]|; i > 0} converges
in B[H].

Lemma 2. The following assertions are equivalent.
(ag) T(f#) < 1.
(b2) {Qi € B1[H]; i > 0} converges in B1[H]| whenever {R; € B1[H]; i > 0} converges

(c2) {Q; € Bf[H] i > 0} converges in B1[H] whenever {R; € B{ [H]; i > 0} converges

Theorem. If r(F) < 1 and r(F#) < 1, then

(mss) {Q; € B [H]; i > 0} converges in B[H] to a nuclear operator whenever {R; €
Bf [H]; i > 0} converges in B[H] to a nuclear operator.

Proof of Lemma 1. Since B[H] is a Banach space, and since F € B[B[H||, we get (aj)
<= (by) (see e.g. [11]). Note that (b;) = (c1) trivially. Now, suppose (c1) holds,
and set R; = [ for every ¢ > 0. Thus, {Q; = Z;ZO FI(I); i > 0} converges in B[H],
so that F*(I) — 0 as i — oo in B[H]. Hence, ||F*|| — 0 as i — oo, according to (P3).
Equivalently (see e.g. [7]), r(F) < 1. Then, (¢;) = (a1). O

Proof of Lemma 2. Consider proposition (P3) and set 71 = F|g, (] : B1[H] — Bi[H],
so that F}(Q) = F*(Q) for all Q € B1[H] and every i > 0. Thus,

|Fil = sup ||FHQ)|lL= sup ||F(Q)|L = ||F*]]
[|Q]l1=1 [1QIl1=1
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for each i > 0, according to (P5). Hence, F; € B[B;[H]|. Moreover, letting r(-) stand
for the spectral radius in the Banach algebra B[B;[H]], we get

(9) ri(F1) = r(F7)

by the Beurling-Gelfand formula for the spectral radius (see e.g. [l p.326]). Now, if
R; € By[H] for every i > 0, then Q; = Y~._ Fy ’(R;) for each i > 0, so that

Qi1 = F1(Qi) + Rita, Qo = Ro.

Therefore, since By[H] is a Banach space and since F; € B[Bi[H]|, it follows that
r1(F1) < 1 if and only if (bg) holds (see e.g. [11]). Thus, (ag) <= (b2) by (9); and
(b2) == (c2) trivially. To verify that (co) = (a2) proceed as follows. Take an arbitrary
R € B1[H]. Recalling that any operator in B[H| has a Cartesian decomposition (whose
real and imaginary parts are self-adjoint), and that any self-adjoint operator in B[H|
can be decomposed in negative and positive parts (see e.g. [1 p.472]), we get

R= (R, — Ry)+v—1(R3 — Ry)

where R,, € B [H] for each m = 1,2,3,4. Now suppose (c3) holds, and set R;,, =
R,, € B'[H] for each m = 1,2,3,4 and every i > 0. Thus, {Q; ., = Z;’:O FI(Ry,) €
B [H]; i > 0} converges in B;[H], so that sup;sg ||Qi,m|[1 < oo, for each m = 1,2,3,4.
Hence, for every ¢ > 0,

STIA R <Y D IF Rl = D~ r(F (Ru)) = Y tr(( 3 F(Ra)

j=0m=1 7j=0m=1 m=1 7=0
4

4 4
=3 @) = 3 1@l < D sup 1@l < o0
m=1 m=1"'Z

m=1

for all R in the Banach space Bi[H]. Equivalently (see e.g. [7]), the operator F; €
B[B;[H]] is such that r1(F1) < 1. Then, (c2) = (az) by (9). O

Proof of Theorem. Suppose r(F) < 1. It is well-known (see e.g. [11]) that r(F) < 1
implies the existence of (Z — F)~' € B[B[H]], the convergence of {Z;":o Fi e
B[B[H]]; @ > 0} in B[B[H]] to (Z — F)~!, and that the limits in (b;) of Lemma 1
are such that Q. = (Z — F) '(Rs) (and so are the limits in (c;)). Take an ar-
bitrary sequence {R; € Bj [H]; i > 0} that converges in B[H] to a nuclear oper-
ator Ry, € Bi'[H]. Since (a;) = (c1) in Lemma 1, {Q; € B [H]; i > 0} con-
verges in B[H] to Qoo = (Z — F)"Y(Rs). Set P, = Z;:o FJ(Rs) in B [H], so that
1P = Quoll < 1520 F7 = (Z = F) 7| [[Ruc|, for every i > 0. Hence,

(10) lim ||P; — Q|| = 0.
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Now note that, according to (P1), (P3) and (P5),

1Py = tx(P Ztrﬂ D =D IIF (Rl < (Zuf#’u)umoul
=0

7=0
for every i > 0. If r(F#) < 1, then

(11) sup || Pi]|1 < oo,
i>1

because Y 7 |F#'|| < oo whenever r(F#) < 1, (see e.g. [7]). From (10) and (11)
it follows that Qo € Bi[H] (see e.g. [8, 14 p.179]), and hence Q., € B [H] (because
BT[H] is closed in B[H]). Thus, r(F) < 1 and 7(F#) < 1 = (mss). O

Remark. It is worth remarking that (mss) = r(F#) < 1. This can be verified by
applying the same technique used to show that (c3) = (a2) in Lemma 2. Here one
has to notice that (mss) ensures that {Q; . € By [H]; i > 0} converges in B[H] to,
say, Qoo.m € By [H] for each m = 1,2,3,4. However, 0 < Q;m < Qoom € B1[H],
since 0 < F(R,) = Qit1.m — Qi.m, for every i > 0 and each m = 1,2,3,4. Hence,
convergence in B[H| actually leads to convergence in B [H] (see e.g. [8]).
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