MEAN-SQUARE STABILITY FOR DISCRETE BILINEAR SYSTEMS IN HILBERT SPACE*

C.S. Kubrusly

National Laboratory for Scientific Computation LNCC, and Catholic University PUC/RJ, Rio de Janeiro, Brazil;

and

O.L.V. Costa, University of São Paulo USP, São Paulo, Brazil.

Abstract. A discrete system is uniformly mean-square stable if uniform convergence is preserved between input and state correlation sequences, and if nuclearity is preserved between the input and state correlation limits. This paper supplies a contraction-free condition ensuring mean-square stability for infinite-dimensional bilinear systems evolving in a separable Hilbert space.

Key words. Discrete bilinear systems; infinite-dimensional systems; operator theory; stability.

November 1991

^{*} Supported in part by CNPq (Brazilian National Research Council).

1. NOTATION

Let B[X] be the Banach algebra of all bounded linear operators from a Banach space X into itself. Both the norm in X and the induced uniform norm in B[X] will be denoted by $||\cdot||$, and $r(\cdot)$ will stand for the spectral radius in B[X]. Throughout the paper we assume that H is a separable nontrivial complex Hilbert space, with inner product $\langle \cdot; \cdot \rangle$. Let $T^* \in B[H]$ be the adjoint of $T \in B[H]$, and set $|T| = (T^*T)^{1/2} \in B^+[H]$, where $B^+[H] := \{T \in B[H] : 0 \le T\}$ is the weakly closed convex cone of all selfadjoint nonnegative operators in B[H]. Let $B_{\infty}[H]$ be the class of all compact operators from B[H]. If $T \in B_{\infty}[H]$ (or equivalently, $|T| \in B_{\infty}[H]$), let $\{\lambda_k; k \geq 0\}$ be the nonincreasing nonnegative null sequence made up of all eigenvalues of |T|, each nonzero one counted according to its multiplicity, and set $||T||_1 = \sum_{k=0}^{\infty} \lambda_k$. Let $B_1[H] :=$ $\{T \in B_{\infty}: ||T||_1 < \infty\}$ denote the class of all nuclear operators from B[H], and set $B_1^+[H] = B_1[H] \cap B^+[H]$. $||\cdot||_1$ is a norm in $B_1[H]$ and $(B_1[H], ||\cdot||_1)$ is a Banach space. Indeed, $B_1[H]$ is a two-sided ideal of B[H], so that $\max\{||LT||_1, ||TL||_1\} \leq ||L|| ||T||_1$ for every $T \in B_1[H]$. The trace of $T \in B_1[H]$ is defined as $tr(T) = \sum_{k=0}^{\infty} \langle Te_k; e_k \rangle$, which does not depend on the choice of the orthonormal basis $\{e_k; k \geq 0\}$ for H, and $|\operatorname{tr}(T)| \leq \operatorname{tr}(|T|) = ||T||_1$ for every $T \in B_1[H]$. Finally, for any $f, g \in H$, let $(f \circ g) \in B_1[H]$ be defined as $(f \circ g)h = \langle h; g \rangle f$ for all $h \in H$, so that $(f \circ f) \in B_1^+[H]$. (For a systematic presentation on nuclear operators, the reader is referred to [5, 13].)

2. INTRODUCTION

Consider a discrete bilinear system operating in a stochastic environment, whose model is given by the following infinite-dimensional difference equation.

(1)
$$x_{i+1} = \left[A_0 + \sum_{k=1}^{\infty} \langle w_i; e_k \rangle A_k \right] x_k + u_{i+1}, \qquad x_0 = u_0,$$

where $\{A_k \in B[H]; k \geq 0\}$ is a bounded sequence, $\{e_k; k \geq 1\}$ is an orthonormal basis for H, and $\{x_i; i \geq 0\}$, $\{w_i; i \geq 0\}$ and $\{u_i; i \geq 0\}$ are H-valued second-order random sequences. Let us make the following simplifying assumptions on the stochastic environment (a more general setup can be found in [12] but the one we set below will suffice our present needs): $\{w_i; i \geq 0\}$ is an independent sequence which is stationary in expectation and correlation, and $\{u_i; i \geq 0\}$ is a zero-mean independent sequence which is independent of $\{w_i; i \geq 0\}$. Let $s \in H$, $s \in$

(2)
$$Q_{i+1} = \mathcal{F}(Q_i) + R_{i+1}, \qquad Q_0 = R_0.$$

Here, $\mathcal{F} \in B[B[H]]$ is given by $\mathcal{F}(Q) = FQF^* + \mathcal{T}(Q)$ for all $Q \in B[H]$, with $F := A_0 + \sum_{k=1}^{\infty} \langle s; e_k \rangle A_k$ in B[H], and $\mathcal{T} \in B[B[H]]$ defined by

$$\mathcal{T}(Q) = \sum_{k,\ell=1}^{\infty} \langle Ce_{\ell}; e_{k} \rangle A_{k} \ Q \ A_{\ell}^{*}$$

for all $Q \in B[H]$; where the above convergences are in the uniform topologies of B[H] and B[B[H]], respectively. By setting $F_0 := F$ and $F_k := A_k$ for every $k \geq 1$, the operator $\mathcal{F} \in B[B[H]]$ can be concisely written as

$$\mathcal{F}(Q) = \sum_{k,\ell=0}^{\infty} \langle \mathbf{C} \mathbf{e}_{\ell}; \mathbf{e}_{k} \rangle F_{k} \ Q \ F_{\ell}^{*}$$

for all $Q \in B[H]$. Here, $\{\mathbf{e}_0 = 1 \oplus 0, \ \mathbf{e}_k = 0 \oplus e_k; \ k \geq 1\}$ is an orthonormal basis for the Hilbert space $\mathbf{H} = \mathcal{C} \oplus H$, and $\mathbf{C} := (1 \oplus C) \in B_1^+[\mathbf{H}]$; with \oplus denoting direct orthogonal sum (see e.g. [3]). In the sequel, we shall also need to define operators associated with \mathcal{T} and \mathcal{F} , say $\mathcal{T}^\# \in B[B[H]]$ and $\mathcal{F}^\# \in B[B[H]]$, according to the following rule: for all $Q \in B[H]$,

$$\mathcal{T}^{\#}(Q) = \sum_{k,\ell=1}^{\infty} \langle Ce_{\ell}; e_{k} \rangle A_{\ell}^{*} \ Q \ A_{k}, \qquad \mathcal{F}^{\#}(Q) = \sum_{k,\ell=0}^{\infty} \langle \mathbf{Ce}_{\ell}; \mathbf{e}_{k} \rangle F_{\ell}^{*} \ Q \ F_{k}.$$

The mean-square stability problem for the infinite-dimensional bilinear model (1) is concerned with the asymptotic behaviour of the state correlation sequence whose evolution was described in (2) (see e.g. [10] and, for continous-time versions, [4, 15]; where the role played by mean-square stability in stochastic system theory is addressed as well). Precisely, it is the problem of finding conditions on the operator \mathcal{F} which ensure that the following definition is fulfilled.

Definition. Consider the preceding setup. The model (1) is (uniformly) mean-square stable if the state correlation sequence $\{Q_i; i \geq 0\}$ converges in B[H] to a correlation operator (i.e. to an operator in $B_1^+[H]$) whenever the input correlation sequence $\{R_i; i \geq 0\}$ converges in B[H] to a correlation operator.

A sufficient condition for mean-square stability was given in [10]: If there exist real constants $\sigma \geq 1$ and $0 < \alpha < 1$ such that (i) $||F^i|| \leq \sigma$ α^i for all $i \geq 0$ and (ii) $\max\{||\mathcal{T}||, ||\mathcal{T}^{\#}||\} < (1 - \alpha^2)/\sigma^2$, then the model (1) is mean-square stable. Actually, the condition (ii) occurring in [10] was defined differently but should have been defined as above. It imposes that \mathcal{T} and $\mathcal{T}^{\#}$ are both strict contractions, which may be thought

of as too stringent a requirement for stability purposes. The aim of the present paper is to provide a condition for mean-square stability without requiring that \mathcal{T} or $\mathcal{T}^{\#}$ are contractions. This will be established in Section 4, by using the results of Section 3. Precisely, we shall show that $\max\{r(\mathcal{F}), r(\mathcal{F}^{\#})\} < 1$ implies mean-square stability as defined above.

3. INTERMEDIATE RESULTS

Given an arbitrary bounded sequence of operators $\{F_k \in B[H]; k \geq 1\}$, and a nonnegative nuclear operator $C \in B_1^+[H]$, set $\mathcal{F}_n \in B[B[H]]$ as follows. For each $n \geq 0$,

$$\mathcal{F}_n(Q) = \sum_{k,\ell=0}^n \langle Ce_\ell; e_k \rangle F_k Q F_\ell^*$$

for all $Q \in B[H]$, where $\{e_k; k \geq 0\}$ is an orthonormal basis for H which ensures that the sequence $\{\mathcal{F}_n; n \geq 0\}$ converges in B[B[H]]. The existence of such an orthonormal basis, which may depend on the operator C but not on the bounded sequence $\{F_k; k \geq 0\}$, has been established in [10]. Let $\mathcal{F} \in B[B[H]]$ be the limit of $\{\mathcal{F}_n; n \geq 0\}$, and write

$$\mathcal{F}(Q) = \sum_{k,\ell=0}^{\infty} \langle Ce_{\ell}; e_{k} \rangle F_{k} Q F_{\ell}^{*}$$

for all $Q \in B[H]$. Now set $\mathcal{F}_n^{\#} \in B[B[H]]$ as follows. For each $n \geq 0$,

$$\mathcal{F}_n^{\#}(Q) = \sum_{k,\ell=0}^n \langle Ce_\ell; e_k \rangle F_\ell^* Q F_k$$

for all $Q \in B[H]$. Since $\{\mathcal{F}_n; n \geq 0\}$ converges uniformly for an arbitrary bounded sequence $\{F_k; k \geq 0\}$, and since boundedness for $\{F_k; k \geq 0\}$ and for $\{F_k^*; k \geq 0\}$ are equivalent, it follows that $\{\mathcal{F}_n^{\#}; n \geq 0\}$ also converges in B[B[H]]. Let $\mathcal{F}^{\#} \in B[B[H]]$ be its limit, so that

$$\mathcal{F}^{\#}(Q) = \sum_{k,\ell=0}^{\infty} \langle Ce_{\ell}; e_{k} \rangle F_{\ell}^{*} Q F_{k}$$

for all $Q \in B[H]$. Propositions (P_1) to (P_5) below comprise the properties of the operators \mathcal{F} and $\mathcal{F}^{\#}$ that will be needed in the sequel. Note that, if any of them holds true, then it does hold for \mathcal{F} interchanged with $\mathcal{F}^{\#}$.

Propositions. For every integer $i \geq 1$,

$$(P_1)$$
 $\mathcal{F}^i(B^+[H]) \subseteq B^+[H],$

$$(P_2) \qquad ||\mathcal{F}^i|| = ||\mathcal{F}^i(I)||,$$

$$(P_3) \mathcal{F}^i(B_1[H]) \subseteq B_1[H],$$

$$(P_4) tr(D\mathcal{F}^i(Q)) = tr(Q\mathcal{F}^{\#i}(D)), D \in B[H], Q \in B_1[H],$$

(P₅)
$$\sup_{||Q||_1=1} ||\mathcal{F}^i(Q)||_1 = ||\mathcal{F}^{\#^i}||.$$

Proof of (P_1) . Let $\{f_j; j \geq 0\}$ be an orthonormal basis for H made up of eigenvectors of $C \in B_1^+[H]$ (whose existence is ensured by the spectral theorem for compact normal operators - see e.g. [1 p.438]). For each $j \geq 0$ let $\gamma_j \geq 0$ be the eigenvalue of C associated with the eigenvector f_j . Take an arbitrary integer $n \geq 1$, and set $F_j(n) = \sum_{k=0}^{n} \langle f_j; e_k \rangle F_k$ in B[H] for each $j \geq 0$. Take $g \in H$ and $h \in H$ arbitrary. It has been shown in [3] that

$$\langle \mathcal{F}_n(Q)g; h \rangle = \sum_{j>0} \gamma_j \langle QF_j^*(n)g; F_j^*(n)h \rangle$$

for all $Q \in B[H]$. Therefore, by induction on i we get

$$(3) \qquad \langle \mathcal{F}_n^i(Q)g;h\rangle = \sum_{j_1,\dots,j_i\geq 0} \gamma_{j_1}\dots\gamma_{j_i}\langle QF_{j_i}^*(n)\dots F_{j_1}^*(n)g;F_{j_i}^*(n)\dots F_{j_1}^*(n)h\rangle$$

for every integer $i \geq 1$ and all $Q \in B[H]$. Thus, if $Q \in B^+[H]$, then

(4)
$$\langle \mathcal{F}_n^i(Q)h; h \rangle = \sum_{j_1, \dots, j_i \ge 0} \gamma_{j_1} \dots \gamma_{j_i} ||Q^{1/2} F_{j_i}^*(n) \dots F_{j_1}^*(n)h||^2,$$

and hence $\mathcal{F}_n^i(Q) \in B^+[H]$ for every $i \geq 1$. Since $\mathcal{F}_n \to \mathcal{F}$ as $n \to \infty$ in B[B[H]], it follows that $\mathcal{F}_n^i \to \mathcal{F}^i$ as $n \to \infty$ in B[B[H]], and so $\mathcal{F}_n^i(Q) \to \mathcal{F}^i(Q)$ as $n \to \infty$ in B[H] for every $Q \in B[H]$ and each $i \geq 1$. Therefore, $\mathcal{F}^i(Q) \in B^+[H]$ whenever $Q \in B^+[H]$, because $B^+[H]$ is closed in B[H].

Proof of (P₂). Take $g \in H$, $h \in H$, $n \ge 0$, and $i \ge 1$ arbitrary. By using the Schwarz inequality three times, it follows from (3) and (4) that

$$|\langle \mathcal{F}_{n}^{i}(Q)g;h\rangle| \leq ||Q|| \sum_{j_{1},\cdots,j_{i}\geq 0} \gamma_{j_{1}}\cdots\gamma_{j_{i}}||F_{j_{i}}^{*}(n)\cdots F_{j_{1}}^{*}(n)g|| ||F_{j_{i}}^{*}(n)\cdots F_{j_{1}}^{*}(n)h||$$

$$\leq ||Q||\langle \mathcal{F}_{n}^{i}(I)g;g\rangle^{1/2} \langle \mathcal{F}_{n}^{i}(I)h;h\rangle^{1/2} \leq ||Q|| ||\mathcal{F}_{n}^{i}(I)|| ||g|| ||h||$$

for every $Q \in B[H]$. Thus, $||\mathcal{F}_n^i|| = ||\mathcal{F}_n^i(I)||$, since

$$||\mathcal{F}_n^i(I)|| \leq ||\mathcal{F}_n^i|| = \sup_{||Q||=1} ||\mathcal{F}_n^i(Q)|| = \sup_{||Q||=1} \sup_{||g||=||h||=1} |\langle \mathcal{F}_n^i(Q)g;h\rangle| \leq ||\mathcal{F}_n^i(I)||.$$

Therefore, $||\mathcal{F}^i|| = ||\mathcal{F}^i(I)||$. Indeed, $||\mathcal{F}^i_n|| \to ||\mathcal{F}^i||$ and $||\mathcal{F}^i_n(I)|| \to ||\mathcal{F}^i(I)||$, because $\mathcal{F}^i_n \to \mathcal{F}^i$ in B[B[H]], as $n \to \infty$ for each $i \ge 1$.

Proof of (P₃). Take $Q \in B_1[H]$ arbitrary. First note that, since $B_1[H]$ is a two-sided ideal of B[H], $D\mathcal{F}_n(Q) \in B_1[H]$ and $Q\mathcal{F}_n^{\#}(D) \in B_1[H]$ for any $D \in B[H]$ and every integer $n \geq 0$. Since $\operatorname{tr}: B_1[H] \to \mathcal{C}$ is a linear functional, and since

$$(5) tr(DE) = tr(ED)$$

for every $D \in B[H]$ and $E \in B_1[H]$, we get by the very definition of \mathcal{F}_n and $\mathcal{F}_n^{\#}$ that

(6)
$$\operatorname{tr}(D\mathcal{F}_n(Q)) = \operatorname{tr}(Q \,\mathcal{F}_n^{\#}(D))$$

for each $n \geq 0$ and every $D \in B[H]$. Now, take arbitrary integers $n, \nu \geq 0$, and consider the polar decomposition $\mathcal{F}_{n+\nu}(Q) - \mathcal{F}_n(Q) = V|\mathcal{F}_{n+\nu}(Q) - \mathcal{F}_n(Q)|$, where $V = V_{n,\nu}(Q) \in B[H]$ is a partial isometry, so that $|\mathcal{F}_{n+\nu}(Q) - \mathcal{F}_n(Q)| = V^*(\mathcal{F}_{n+\nu}(Q) - \mathcal{F}_n(Q))$ (see e.g. [6 pp.74, 262]). From (6) we get

$$||\mathcal{F}_{n+\nu}(Q) - \mathcal{F}_n(Q)||_1 = \operatorname{tr}(V^* \mathcal{F}_{n+\nu}(Q)) - \operatorname{tr}(V^* \mathcal{F}_n(Q))$$

=
$$\operatorname{tr}(Q \mathcal{F}_{n+\nu}^{\#}(V^*)) - \operatorname{tr}(Q \mathcal{F}_n^{\#}(V^*)) \le ||Q||_1 ||\mathcal{F}_{n+\nu}^{\#} - \mathcal{F}_n^{\#}||_1,$$

by linearity of the trace and recalling that a partial isometry is a contraction (so that $||V^*|| \leq 1$). Thus, since $\{\mathcal{F}_n^\#; n \geq 0\}$ converges in B[B[H]], $\lim_{n\to\infty} \sup_{\nu\geq 0} ||\mathcal{F}_{n+\nu}(Q) - \mathcal{F}_n(Q)||_1 = 0$. Hence, $\{\mathcal{F}_n(Q); n\geq 0\}$ converges in the Banach space $B_1[H]$. However, $\{\mathcal{F}_n(Q); n\geq 0\}$ converges to $\mathcal{F}(Q)$ in B[H]. Therefore,

(7)
$$\mathcal{F}_n(Q) \to \mathcal{F}(Q)$$
 as $n \to \infty$ in $B_1[H]$,

since convergence in $B_1[H]$ impleis convergence in B[H], clearly to the same limit. Thus $\mathcal{F}(Q) \in B_1[H]$, so that $B_1[H]$ is invariant under \mathcal{F} , and the inclusion in (P_3) is trivially verified by induction.

Proof of (P_4) . Take $D \in B[H]$ and $Q \in B_1[H]$ arbitrary. Convergence in (7) implies that

$$D\mathcal{F}_n(Q) \to D\mathcal{F}(Q)$$
 as $n \to \infty$ in $B_1[H]$.

Moreover, since $\{\mathcal{F}_n^{\#}(D); n \geq 0\}$ converges to $\mathcal{F}^{\#}(D)$ in B[H],

$$Q\mathcal{F}_n^{\#}(D) \to Q\mathcal{F}^{\#}(D)$$
 as $n \to \infty$ in $B_1[H]$.

Since $\operatorname{tr}: B_1[H] \to \mathbb{C}$ is continuous, the above two convergence results lead to

(8)
$$\operatorname{tr}(D \mathcal{F}(Q)) = \operatorname{tr}(Q \mathcal{F}^{\#}(D)),$$

according to (6). Thus, (P₄) holds for i = 1. Suppose it holds for some $i \ge 1$. Then, since $\mathcal{F}(Q) \in B_1[H]$, and according to (5) and (8),

$$\operatorname{tr}(D\mathcal{F}^{i+1}(Q)) = \operatorname{tr}(\mathcal{F}(Q)\mathcal{F}^{\#^{i}}(D)) = \operatorname{tr}(\mathcal{F}^{\#^{i}}(D)\mathcal{F}(Q)) = \operatorname{tr}(Q\,\mathcal{F}^{\#^{i+1}}(D)),$$

which completes the proof by induction.

Proof of (P₅). Take $Q \in B_1[H]$ and $i \geq 1$ arbitrary. Consider the polar decomposition $\mathcal{F}^i(Q) = V_i|\mathcal{F}^i(Q)|$, where $V_i = V_i(Q) \in B[H]$ is a partial isometry, so that $|\mathcal{F}^i(Q)| = V_i^*\mathcal{F}^i(Q)$. From (P₄) we get

$$||\mathcal{F}^{i}(Q)||_{1} = \operatorname{tr}(V_{i}^{*}\mathcal{F}^{i}(Q)) = \operatorname{tr}(Q \mathcal{F}^{\#^{i}}(V_{i}^{*})) \leq ||Q||_{1}||\mathcal{F}^{\#^{i}}||_{1},$$

since $||V_i^*|| \le 1$. On the other hand, from (P_4) and (5), by using the very definition of trace, and according to the Fourier series theorem (see e.g. [1 p.155]), we have

$$\operatorname{tr}(\mathcal{F}^{i}(f \circ g)) = \operatorname{tr}((f \circ g)\mathcal{F}^{\#^{i}}(I)) = \operatorname{tr}(\mathcal{F}^{\#^{i}}(I)(f \circ g))$$
$$= \sum_{k=0}^{\infty} \langle \mathcal{F}^{\#^{i}}(I)(f \circ g)h_{k}; h_{k} \rangle = \sum_{k=0}^{\infty} \langle \mathcal{F}^{\#^{i}}(I)f; h_{k} \rangle \ \langle h_{k}; g \rangle = \langle \mathcal{F}^{\#^{i}}(I)f; g \rangle$$

for every $f, g \in H$, and for any orthonormal basis $\{h_k; k \geq 0\}$ for H. Hence,

$$|\langle \mathcal{F}^{\#}(I)f;g\rangle| \leq \operatorname{tr}(|\mathcal{F}^{i}(f\circ g)|) = ||\mathcal{F}^{i}(f\circ g)||_{1},$$

for all $f, g \in H$. Therefore, since $||f \circ g||_1 = ||f|| \ ||g||$ for every $f, g \in H$,

$$||\mathcal{F}^{\#^i}(I)|| = \sup_{||f||=||g||=1} |\langle \mathcal{F}^{\#^i}(I)f;g\rangle| \le \sup_{||Q||_1=1} ||\mathcal{F}^i(Q)||_1.$$

Finally, recall that $||\mathcal{F}^{\#^i}|| = ||\mathcal{F}^{\#^i}(I)||$ (cf. (P₂) with \mathcal{F} replaced by $\mathcal{F}^{\#}$).

4. FINAL RESULTS

Given an operator sequence $\{R_i \in B[H]; i \geq 0\}$ consider another operator sequence $\{Q_i \in B[H]; i \geq 0\}$ recursively defined by a linear autonomous difference equation,

$$Q_{i+1} = \mathcal{F}(Q_i) + R_{i+1},$$
 $Q_0 = R_0,$

with $\mathcal{F} \in B[B[H]]$ defined as in the previous section, whose solution is given by

$$Q_i = \sum_{j=0}^{i} \mathcal{F}^{i-j}(R_j)$$

for each $i \geq 0$. Hence, the operator sequence $\{Q_i; i \geq 0\}$ is $B^+[H]$ -valued and/or $B_1[H]$ -valued whenever the operator sequence $\{R_j; j \geq 0\}$ has the same properties, according to propositions (P_1) and (P_3) . As we have seen in Section 2, the above linear model in B[H] describes the state correlation evolution for an infinite-dimensional bilinear system if $\{R_i; i \geq 0\}$ and $\{Q_i; i \geq 0\}$ are identified with input and state correlation sequences, respectively (and hence restricted to be $B_1^+[H]$ -valued). The theorem below shows that mean-square stability as defined in Section 2 is ensured whenever $r(\mathcal{F}) < 1$ and $r(\mathcal{F}^{\#}) < 1$. Before stating it we shall give equivalent conditions for $r(\mathcal{F}) < 1$ and for $r(\mathcal{F}^{\#}) < 1$ (further conditions for $r(\mathcal{F}) < 1$ were established in [3]).

Lemma 1. The following assertions are equivalent.

- (a₁) $r(\mathcal{F}) < 1$.
- (b₁) $\{Q_i \in B[H]; i \geq 0\}$ converges in B[H] whenever $\{R_i \in B[H]; i \geq 0\}$ converges in B[H].
- (c₁) $\{Q_i \in B^+[H]; i \geq 0\}$ converges in B[H] whenever $\{R_i \in B^+[H]; i \geq 0\}$ converges in B[H].

Lemma 2. The following assertions are equivalent.

- (a₂) $r(\mathcal{F}^{\#}) < 1$.
- (b₂) $\{Q_i \in B_1[H]; i \geq 0\}$ converges in $B_1[H]$ whenever $\{R_i \in B_1[H]; i \geq 0\}$ converges in $B_1[H]$.
- (c₂) $\{Q_i \in B_1^+[H] | i \ge 0\}$ converges in $B_1[H]$ whenever $\{R_i \in B_1^+[H]; i \ge 0\}$ converges in $B_1[H]$.

Theorem. If $r(\mathcal{F}) < 1$ and $r(\mathcal{F}^{\#}) < 1$, then

(mss) $\{Q_i \in B_1^+[H]; i \geq 0\}$ converges in B[H] to a nuclear operator whenever $\{R_i \in B_1^+[H]; i \geq 0\}$ converges in B[H] to a nuclear operator.

Proof of Lemma 1. Since B[H] is a Banach space, and since $\mathcal{F} \in B[B[H]]$, we get $(a_1) \iff (b_1)$ (see e.g. [11]). Note that $(b_1) \implies (c_1)$ trivially. Now, suppose (c_1) holds, and set $R_i = I$ for every $i \geq 0$. Thus, $\{Q_i = \sum_{j=0}^i \mathcal{F}^j(I); i \geq 0\}$ converges in B[H], so that $\mathcal{F}^i(I) \to 0$ as $i \to \infty$ in B[H]. Hence, $||\mathcal{F}^i|| \to 0$ as $i \to \infty$, according to (P_2) . Equivalently (see e.g. [7]), $r(\mathcal{F}) < 1$. Then, $(c_1) \implies (a_1)$.

Proof of Lemma 2. Consider proposition (P₃) and set $\mathcal{F}_1 = \mathcal{F}|_{B_1[H]} : B_1[H] \to B_1[H]$, so that $\mathcal{F}_1^i(Q) = \mathcal{F}^i(Q)$ for all $Q \in B_1[H]$ and every $i \geq 0$. Thus,

$$||\mathcal{F}_1^i||_1 := \sup_{||Q||_1=1} ||\mathcal{F}_1^i(Q)||_1 = \sup_{||Q||_1=1} ||\mathcal{F}^i(Q)||_1 = ||\mathcal{F}^{\#^i}||_1$$

for each $i \geq 0$, according to (P_5) . Hence, $\mathcal{F}_1 \in B[B_1[H]]$. Moreover, letting $r_1(\cdot)$ stand for the spectral radius in the Banach algebra $B[B_1[H]]$, we get

$$(9) r_1(\mathcal{F}_1) = r(\mathcal{F}^\#)$$

by the Beurling-Gelfand formula for the spectral radius (see e.g. [1 p.326]). Now, if $R_i \in B_1[H]$ for every $i \geq 0$, then $Q_i = \sum_{j=0}^i \mathcal{F}_1^{i-j}(R_j)$ for each $i \geq 0$, so that

$$Q_{i+1} = \mathcal{F}_1(Q_i) + R_{i+1},$$
 $Q_0 = R_0.$

Therefore, since $B_1[H]$ is a Banach space and since $\mathcal{F}_1 \in B[B_1[H]]$, it follows that $r_1(\mathcal{F}_1) < 1$ if and only if (b_2) holds (see e.g. [11]). Thus, $(a_2) \iff (b_2)$ by (9); and $(b_2) \implies (c_2)$ trivially. To verify that $(c_2) \implies (a_2)$ proceed as follows. Take an arbitrary $R \in B_1[H]$. Recalling that any operator in B[H] has a Cartesian decomposition (whose real and imaginary parts are self-adjoint), and that any self-adjoint operator in B[H] can be decomposed in negative and positive parts (see e.g. [1 p.472]), we get

$$R = (R_1 - R_2) + \sqrt{-1} (R_3 - R_4)$$

where $R_m \in B_1^+[H]$ for each m = 1, 2, 3, 4. Now suppose (c₂) holds, and set $R_{i,m} = R_m \in B_1^+[H]$ for each m = 1, 2, 3, 4 and every $i \geq 0$. Thus, $\{Q_{i,m} = \sum_{j=0}^i \mathcal{F}^j(R_m) \in B_1^+[H]; i \geq 0\}$ converges in $B_1[H]$, so that $\sup_{i\geq 0} ||Q_{i,m}||_1 < \infty$, for each m = 1, 2, 3, 4. Hence, for every $i \geq 0$,

$$\sum_{j=0}^{i} ||\mathcal{F}_{1}^{j}(R)||_{1} \leq \sum_{j=0}^{i} \sum_{m=1}^{4} ||\mathcal{F}^{j}(R_{m})||_{1} = \sum_{j=0}^{i} \sum_{m=1}^{4} \operatorname{tr}(\mathcal{F}^{j}(R_{m})) = \sum_{m=1}^{4} \operatorname{tr}\left(\sum_{j=0}^{i} \mathcal{F}^{j}(R_{m})\right)$$
$$= \sum_{m=1}^{4} \operatorname{tr}(Q_{i,m}) = \sum_{m=1}^{4} ||Q_{i,m}||_{1} \leq \sum_{m=1}^{4} \sup_{i \geq 0} ||Q_{i,m}||_{1} < \infty$$

for all R in the Banach space $B_1[H]$. Equivalently (see e.g. [7]), the operator $\mathcal{F}_1 \in B[B_1[H]]$ is such that $r_1(\mathcal{F}_1) < 1$. Then, $(c_2) \Longrightarrow (a_2)$ by (9).

Proof of Theorem. Suppose $r(\mathcal{F}) < 1$. It is well-known (see e.g. [11]) that $r(\mathcal{F}) < 1$ implies the existence of $(\mathcal{I} - \mathcal{F})^{-1} \in B[B[H]]$, the convergence of $\{\sum_{j=0}^{i} \mathcal{F}^{j} \in B[B[H]]; i \geq 0\}$ in B[B[H]] to $(\mathcal{I} - \mathcal{F})^{-1}$, and that the limits in (b_1) of Lemma 1 are such that $Q_{\infty} = (\mathcal{I} - \mathcal{F})^{-1}(R_{\infty})$ (and so are the limits in (c_1)). Take an arbitrary sequence $\{R_i \in B_1^+[H]; i \geq 0\}$ that converges in B[H] to a nuclear operator $R_{\infty} \in B_1^+[H]$. Since $(a_1) \Longrightarrow (c_1)$ in Lemma 1, $\{Q_i \in B_1^+[H]; i \geq 0\}$ converges in B[H] to $Q_{\infty} = (\mathcal{I} - \mathcal{F})^{-1}(R_{\infty})$. Set $P_i = \sum_{j=0}^{i} \mathcal{F}^{j}(R_{\infty})$ in $B_1^+[H]$, so that $||P_i - Q_{\infty}|| \leq ||\sum_{j=0}^{i} \mathcal{F}^{j} - (\mathcal{I} - \mathcal{F})^{-1}|| \, ||R_{\infty}||$, for every $i \geq 0$. Hence,

$$\lim_{i \to \infty} ||P_i - Q_\infty|| = 0.$$

Now note that, according to (P_1) , (P_3) and (P_5) ,

$$||P_i||_1 = \operatorname{tr}(P_i) = \sum_{j=0}^i \operatorname{tr}(\mathcal{F}^i(R_\infty)) = \sum_{j=0}^i ||\mathcal{F}^j(R_\infty)||_1 \le \left(\sum_{j=0}^i ||\mathcal{F}^{\#^i}||\right) ||R_\infty||_1$$

for every $i \geq 0$. If $r(\mathcal{F}^{\#}) < 1$, then

$$\sup_{i\geq 1}||P_i||_1<\infty,$$

because $\sum_{j=0}^{\infty} ||\mathcal{F}^{\#^i}|| < \infty$ whenever $r(\mathcal{F}^{\#}) < 1$, (see e.g. [7]). From (10) and (11) it follows that $Q_{\infty} \in B_1[H]$ (see e.g. [8, 14 p.179]), and hence $Q_{\infty} \in B_1^+[H]$ (because $B^+[H]$ is closed in B[H]). Thus, $r(\mathcal{F}) < 1$ and $r(\mathcal{F}^{\#}) < 1 \Longrightarrow$ (mss).

Remark. It is worth remarking that (mss) $\Longrightarrow r(\mathcal{F}^{\#}) < 1$. This can be verified by applying the same technique used to show that $(c_2) \Longrightarrow (a_2)$ in Lemma 2. Here one has to notice that (mss) ensures that $\{Q_{i,m} \in B_1^+[H]; i \geq 0\}$ converges in B[H] to, say, $Q_{\infty,m} \in B_1^+[H]$ for each m = 1, 2, 3, 4. However, $0 \leq Q_{i,m} \leq Q_{\infty,m} \in B_1[H]$, since $0 \leq \mathcal{F}^{i+1}(R_m) = Q_{i+1,m} - Q_{i,m}$, for every $i \geq 0$ and each m = 1, 2, 3, 4. Hence, convergence in B[H] actually leads to convergence in $B_1[H]$ (see e.g. [8]).

REFERENCES

- [1] G. Bachman and L. Narici, Functional Analysis (Academic Press, New York, 1966).
- [2] A.V. Balakrishnan, Applied Functional Analysis 2nd ed. (Springer-Verlag, New York, 1980).
- [3] O.L.V. Costa and C.S. Kubrusly, Lyapunov equation for infinite-dimensional discrete bilinear systems, *Systems Control Lett.* **17** (1991) 71–77.
- [4] G. da Prato and A. Ichikawa, Liapunov equation for time-varying linear systems, Systems Control Lett. 9 (1987) 165–172.
- [5] I.C. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators Transl. Math. Monogr. 18 (Amer. Math. Soc., Providence, 1969).
- [6] P.R. Halmos, A Hilbert Space Problem Book 2nd ed. (Springer-Verlag, New York, 1982).
- [7] C.S. Kubrusly, Mean square stability for discrete bounded linear systems in Hilbert space, SIAM J. Control Optimiz. 23 (1985) 19–29.
- [8] C.S. Kubrusly, On convergence of nuclear and correlation operators in Hilbert space, *Mat. Aplic. Comp.* **5** (1986) 265-282.

- [9] C.S. Kubrusly, Quadratic-mean convergence and mean-square stability for discrete linear systems: a Hilbert-space approach, *IMA J. Math. Control Inform.* 4 (1987) 93–107.
- [10] C.S. Kubrusly, On the existence, evolution, and stability of infinite-dimensional stochastic discrete bilinear models, *Control Theory Adv. Technol.* **3** (1987) 271–287.
- [11] C.S. Kubrusly, Uniform stability for time-varying infinite-dimensional discrete linear systems, *IMA J. Math. Control Inform.* **5** (1988) 269–283.
- [12] C.S. Kubrusly, On stochastic modelling for discrete bilinear systems in Hilbert space, *Math. Comp. Simul.* **31** (1989) 19-30.
- [13] R. Schatten, Norm Ideals of Completely Continuous Operators 2nd pr. (Springer-Verlag, Berlin, 1970).
- [14] J. Weidmann, *Linear Operators in Hilbert Spaces* (Springer Verlag, New York, 1980).
- [15] J. Zabczyk, On the stability of infinite-dimensional linear stochastic systems, *Probab. Theory* **5** (1979) 273-281.