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1. NOTATION

Let B[X] be the Banach algebra of all bounded linear operators from a Banach space X
into itself, and let G[X] be the group of all invertible operators from B[X]. Both the norm in
X and the induced uniform norm in B[X] will be denoted by || - ||, and r,(-) will stand for the
spectral radius in B[X]. An operator T" € B[X] is said to be similar to a strict contraction
if |W=ITW]| < 1 for some W € G[X]. Throughout this paper, H will stand for a separable
nontrivial complex Hilbert space with inner product (-;-), and an upper star * will denote
adjoint of a Hilbert-space operator, as usual. The Hilbert space ©72,H obtained by the direct
(orthogonal) sum of countably infinite copies of H will be denoted by ¢5(H), and its inner
product by ()¢, (m). Let BT [H] be the weakly closed cone of B[H] made up of all self-adjoint
nonnegative operators, let GT[H| = BT[H|NG[H] be the class of all strictly positive operators,
and let BX [H] be the class of all compact operators from BT[H]. The trace of T € BL[H] is
defined as tr(T) = Y p(Ter;ex) = Y pey Ak, where {eg; k > 1} is any orthonormal basis for
H, and {\; > 0; k> 1} is a sequence made up of all eigenvalues of T' € BY [H|, each nonzero
one counted according to its multiplicity. Set By [H] = {T € BL[H] : tr(T) < oo}, the class
of all nonnegative nuclear operators. Finally, for any h € H, let (ho h) € B]"[H] be defined as
(hoh)x = (z;hyh for all z € H.

2. INTRODUCTION

Given an operator sequence {R; € B[X]|; ¢ > 0}, consider another operator sequence
{Q; € B[X]; i > 0} recursively defined by a linear autonomous difference equation

(1) Qiv1 = F(Qi) + Riya, Qo = Ro,

where F stands for a bounded linear transformation from the Banach space B[H] into it-
self. Recall that {Q; € B[H]; ¢ > 0} converges in B[H| whenever {R; € B[H|; i > 0}
converges in B[H] if and only if [6]

(2) re(F) < 1.

As a background for our further discussion let us consider first a well-known particular case,
viz. F = Fp, where Frp € B[B[H]] is defined by

Fr(Q)=FQF"  VQe B[H]
for some F' € B[H]. Since | FL| = ||[F*||? for every i > 0, 7,(Fr) = r,(F)? according to the
Gelfand formula for the spectral radius. Hence, r,(Fr) < 1 if and only if r,(F') < 1. However,
as is well known (see e.g. [1, 3, 7, 9, 10]), ro(F) < 1 if and only if

(3) for every V' € GT[H] there exists a unique solution W € G [H] for the
Lyapunov equation V =W — F(W).
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The purpose of this paper is to show that the equivalence between (2) and (3) still holds for a
more general case where, instead of setting F = Fp, we take F := Fp + 7 with 7 in B[B[H]]
defined as follows.

=) (Cepern)Ar QA;  VQ € BlH],

k=1

where {Ay € B[H]; k > 0} is an arbitrary bounded sequence of operators, C € B; [H] is any
nonnegative nuclear operator, and {eg; k > 1} is a suitable orthonormal basis for H ensuring
convergence for the above infinite series.

Such a deterministic linear setup, concerning the convergence preserving property of the
linear model (1), naturally arrises in the mean-square stability problem for infinite-dimensional
discrete (either linear or bilinear) systems operating in a stochastic environment. Actually,
mean-square stability for an infinite-dimensional discrete (either linear or bilinear) system re-
quires that the state correlation sequence, say {Q; € By [H]; i > 0}, converges in B[H| whenever
the input correlation sequence, say {R; € Bi [H]; i > 0}, converges in B[H]; and such a state
correlation sequence evolves according to the linear model (1), with F = Fp for the case of a
linear system (see e.g. [4, 11]), or with F = Fp + 7 for the case of a bilinear system (see e.g.
[5] and, for the continuous-time case, [2, 12]).

Our main result is presented in section 4 by using the auxiliary results developed in section
3. The present approach was motivated by the earlier works on finite-dimensional stochastic
bilinear systems in [8] and on infinite-dimensional deterministic linear systems in [7], extending
the former to an infinite-dimensional setting and the latter to the underlying class of operators
F=Fr+T.

3. PRELIMINARIES

Consider a bounded sequence of operators {A, € B[H|; k > 1}, and let {ex; k > 1} be
an orthonormal basis for H. Given C' € B [H], set 7,, € B[B[H]] as follows. For each integer
n>1,

T.(Q) = > (Ceser)Ar Q A VQ € B[H|.
k=1
Assumption. 7,, — 7 € B[B[H]] as n — oo in B[B[H]].
Under the above assumption, write

=) (Ceper)Ax Q A;  VQ € B[H]

k=1



3
and, given F' € B[H], let F € B[B[H]] be defined as follows.

FQ)=FQF +7T(Q) VQ € B[H].

Remark. Note that the very definition of {7, € B[B[H]]; n > 1} in terms of a bounded
sequence {A;, € B[H]; k> 1} and a nonnegative nuclear operator C' € B} [H] is not enough to
ensure its convergence as assumed above. For instance, take ¢ € H such that | Y, _; (c;ex)| — o0
as n — oo (e.g. with H = (9, take ¢ = ( 1, 1/2, 1/3, ---) € {5 and let {ex; k > 1} be the
standard orthonormal basis for £5), and set C = (coc) € B [H]. Thus, > pu—1(Cerier) =
Soni—ilese) (cex) = |3 70_1(cex)|? for each n > 1. Therefore, with Ay = I for every k > 1,
T.(I) = | Y p_,{c;ex)|I for each n > 1, so that ||Z,(I)|| — co as n — oc. On the other hand,
the assumed uniform convergence of {7,, € B[B[H]|; n > 1} can always be achieved by choosing
a suitable orthonormal basis for H. For instance, take any s € H and set S = C'+ (sos). Since
S € B [H], let {e}; k > 1} be an orthonormal basis for H made up of eigenvectors of S (whose
existence is ensured by the spectral theorem for compact normal operators). Let A\ > 0 be the
eingevalue of S associated with the eigenvector e; for each k > 1, and set £,, € B[B[H]] for
every n > 1 as follows.

n

La(Q) = ) (Serier)Ar Q 47 =) A\ Ax QAL VQ € BIH].
k=1

k,t=1

Since Y o2 Ak = D peq (Sex;ex) = tr(S) < oo,

o0
sup || Lnyy — Ln]] < (sup ||Ak||2> Z A — 0 as n — oo,
v>1 k>1 Ml

so that {£,, € B[B[H]]; n > 1} converges in the Banach space B[B[H]|. Now set K,, € B|B[H]]
such that

Kn(@Q) =Y ((sos)esen)Ar @ Aj = M, Q M ¥Q € B[H],

k=1
where M, := > ,_,(s;ex)A, € B[H], for every n > 1; and note that (3_h_  [(s;ex)])? =
ftmm [((s08)eser)| < 377 oy [(Sensen)| = 34—, Ak for every m,p > 1, since (sos) < S.

Thus,
oo 1/2
sup || M4 — My, < (supHAkH) ( Z /\k> —0 as n— oo,
v>1 k>1 fmr 1

and hence {M,, € B[H]; n > 1} converges in the Banach space B[H]|. By letting M € B[H] be
its limit, it is readily verified that

0 Kn(Q) = MQMC| < [0 = M|+ 200 Mo = M| = 0 a5 = o
=1
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so that {K,, € B[B[H]]; n > 1} also converges in B[B[H]]. Therefore, {7, € B[B[H]]; n > 1}
converges in B[B[H]], since 7,, = L,, — K,, for every n > 1.

Finally, for any W € GT[H] let W € G[B[H]] be defined by
WQ =WQW  vQe BlH],
so that W1 € G[B[H]] is such that

W) =w=tQw™'  vQe B[H].

Propositions. For every W € GT[H]|,

(P1) WTIFW(B*[H]) C BY[H],
(P2) WLFEW = W FEWI))] -

Proof. Consider the direct (orthogonal) sum H = €'® H, which is a Hilbert space with inner
product given by

(x;y) = &0+ (1;9)

foralx=¢(@randy =v@yin H (§,v € € the upper bar denoting complex conjugate, and
x,y € H). Given the orthonormal basis {ex; k > 1} for H set, for each k > 0,

o — 1e0 if k=0,
k= Ode, if k>1,;

so that {ey; k > 0} is an orthonormal basis for H. Let C = (1® C) € B; [H] be the direct sum
of the identity on € with C € B [H], so that
(Cx;y) = (€& Cx; vDY) =0+ (Cayy)

forallx=¢(@rxreHand y = v ®y € H. In particular,

1 if k=¢=0,
(Ceysex) = { (Cegse) if Kk, 0>1,
0 otherwise.

Thus, for each n > 1, set F,, € B[B[H]] as follows.

n

Fu(Q) = FQF* +T,(Q) = > _ (Cesex) RQF;  VQ € B[H],
k=0
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with Fy := F' € B[H| and Fy, := A, € B[H] for every k > 1, so that F,, — F € B[B[H]] as
n — oo in B[B[H]], where

oo

F(Q)=FQF* +T(Q)= ) (Ceser)FQF;  VQ € B[H],

k,6=0

according to the convergence assumption on {7,, € B[B[H]]; n > 1}. Now, since C € Bj"[H],
the spectral theorem says that

Cx = Zw(x; fj>fj Vx e H

for some orthonormal basis {f;; j > 0} for H, where v; > 0 for every j > 0 (actually, Z;io v =
tr(C) < o0). Then, by continuity of the inner product,

(Ceyr; ey) Z’Y; es; €k)

for every k,¢ > 0. Hence, for each n > 1,

> vileni f;) (Fsen) (QFF x5 Fy)

k,6=0 j=0

|
NE

(Fr(Q)z;y) =

n

V; (Qes; £5)Frx; (er; £5)Fry)
k,l=

'yj<Q eg, Ny x; Zek, Fky>

§=0 (=

Il
3 ©

Mz 10

for all x,y € H, since addition is continuous. Thus, if Q) € B*[H |, then

2
< Z'Y] Ql/QZ eg, Fk(L’

which implies that F,,(Q) € B+[H |, for every n > 1. Therefore,

(P1) F(BT[H]) € BT[H],

because BT[H] is closed in B[H]|. Now, by using the Schwarz inequality twice, and recalling
that || F,(I1)'2|| = || F.(1)||*/? since F,,(I) € BY[H] for every n > 1, we get

(Fa @z 0) < 1R % || en ) Fra ‘
£=0

7=0 k=0
<HQH(Z% Zee, Nt ) (Z% Zek, \FLy

= lQlFn(1 )w;w>1/2<5fn(1)y;y>1/2
= 1QN 1Fa (D)2l |Fu () 2yl < QU IFa (D] NIl [l

Ve e H,

n

> lewif)) Fiy

2)1/2




for all z,y € H and every n > 1, so that

[Fn(@If = sup  [(Fu(@)z;y)| < QI Fn(D)]

lzll=llyll=1
for all Q € B[H] and every n > 1. Hence, ||F,|| = ||F.(I)||, because

an(I)H§||fn||=||zlﬁlil||fn(62)ll < [[F(Dl;

for every n > 1. Therefore, since F,, — F as n — oo in B[B[H]],
(P) IFI = IFDI-

Finally, take an arbitrary W € GT[H] and set F, = W—1F,W € B[H] for every k > 0. Thus,

WIFW(Q) =W FWQW)W ™' = ) (Ceper) FLQF;  VQ € B[H].
k=0

Hence, (P}) implies (P1), and (P%) implies (Py3). O
Lemma. For any W € GT[H] and any o € (0, 00),

IWIFW| <a <<= aW?-FW? e BT[H],
IWLFW| <a <« aW?—-F(W?) e GT[H].

Proof. Take an arbitrary W € G*[H] and set F = W~'FW e B[B[H]|, so that F(I) =
W=L1F(W?2)W~=1 € B[B[H]]. Thus, for any a € (0, c0),

(aW? = FOWH)z; ) = ((ad — F(I))Wax; W) Vo e H.

Hence, aW? — F(W?) € B¥[H] (€ G*[H]) if and only if af — F(I) € B¥[H] (€ GT[H]), which
in turn is equivalent (cf. [7]) to | F(I1)'/?|| < a'/? (< a!/?), since F(I) € BT[H] by Proposition
(Py). However, by Proposition (Py), || F|| = [|F(I)|| = ||F(I)/?||2. Thus, the above inequality

is equivalent to || F|| < a (< «), which completes the proof. 0

4. CONCLUSION

In this final section we shall conclude the anounced proof for the equivalence be-
tween assertions (2) and (3) with F = Fp replaced by F = Fp + 7. As com-
mented on section 2, this supplies a necessary and sufficient condition for the convergence
preserving property between input and state correlation sequences, as required in the
mean-square stability problem, for infinite-dimensional discrete bilinear systems.
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Theorem. The following assertions are equivalent.
(a) re(F) < 1.
) F is similar to a strict contraction.
(c) There exists W € Gt[H] such that W — F(W) € GT[H].
) For every V € GT[H| there exists W € G1[H] such that
V=W-FW).

Moreover, if the above holds, then the solution W € GT[H| of the Lyapunov-like equation
V=W —FW), for any V € GT[H], is unique and given by

W:ifj(V) = Z-F)7'(V)
=0

(with T standing for the identity in B[B[H]]), where the above convergence is in the uniform
topology of B[B[H]].

Proof. 1t is trivially verified that (d) = (c), and (¢) = (b) according to the previous
Lemma. Since similarity preserves the spectrum, r,(F) = r,( W™ LFW) < |[W™LFW)| for
every W € G[B[H]|, so that (b) = (a). To verify that (a) = (d), proceed as follows.
Suppose 7, (F) < 1 (so that 372 [|F7|| < oo) and take an arbitrary V € G[H]. According to

Proposition (P1) (with W = I) we get by induction on j that F7(V) € B*[H] for every j > 0.
Then, for every n > 0,

IV P2 < V2P < Y IF V) Pa? < (Z HfjH) Vil
j=0 j=0
for all x € H. Hence, we may define a map ® : H — {5(H), given by
@m:@fj(V)l/Zx Vo e H,
j=0
which is clearly linear and bounded, with

117,y = Y IF (V)22|>  VazeH,
j=0

so that it has a bounded inverse on its (closed) range. Thus, ®*® € GT[H|. By the continuity
of the inner product we get (cf. proof of Proposition (Py)), for every xz € H,

(F(®*P)x;x) = < Z <Ce4;ek>Fk(I>*<I>Fé*a:;x>
k,¢=0
= (Ceg;ek> <<I>Fe*x; (I)F]:$>£2(H).
k,0=0



However, for each k,/ > 0 and every = € H,
(PF 2 OFf )y = »_(FI (V)2 Fya; FI(V) P Fia)

Jj=0

o0

Y EFWERL = (B (S FW))F),

=0

since {77 FI; n >0} converges in B[B[H]| whenever r,(F) < 1. Therefore,

(F(®*®)x; x) = < i (Cey; ex) Fy, (i ]:j(V))FL;*x;:E>
k0=0 =0
= <‘7:(2_: fj(V))a:; ac> = Z:(]:jJFI(V)x;:v}

S INFI V) 2x|? = (| 0a|1F, ) — IV 2|2
j=1

for every x € H, so that
(V = 070 + F(@ @))zia) = [V 2|2 = |[0all2, ) + (F(@* @)asz) = 0

for all z € H. Hence, V = ®*® — F(®*®). Thus, (a) = (d) with W = ®*® € GT[H].
Moreover, such an operator is unique. Indeed, if V. =W —F(W) € GT[H] for some W € GT[H],
then

1F/ (V) 2P = (FI(V)as ) = | FF (W) 2| — | F7H (W) 22

for all z € H and every 57 > 0. Hence, for every z € H,

o0

|02,y = Jim S 1F (V)22 = tim (W22 — |2 (W) 22 ) = W2,
j=0

since | F (W)Y 2|2 < ||F| W] ||lz]|> — 0 as n — oo, because 74 (F) < 1. Therefore,
(@%@ W) as2) = [0, ) — W22 =0 VeeH,
so that W = ®*®, which proves uniqueness. Finally, if W € GT[H] is the solution of V =W —

F(W) € GT[H], then Z;-L:o Fi(V) = Z?:o (]-"J(W) —}"j“(W)) =W — F*tY(W) € BT[H]
for each n > 0. Thus,

2 W)~ WH _F W) < [FE W =0 as n— oo,
7=0
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because 7,(F) < 1. Hence, y7_ F/(V) — W as n — oo in B[H|. However, since 7,(F) < 1
actually implies that (Z — F) € G[B[H]] and that {3°7_F’/ € B[B[H]]; n > 0} converges in

B[B[H]] to (Z — F)~! € G|B[H]], we get the final claim. O
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