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1. INTRODUCTION

Consider a discrete time-varying linear system modelled as follows.

(M) z(n+1) = F(n)z(n) + u(n+1),  z(0) = u(0),

where, for each integer n > 0, z(n) and u(n) lie in a Banach space X, and F(n) is a
bounded linear operator from X into itself. Let D and E be bounded sets in X containing
the origin as an interior point. Now consider the following (stability) property.

(S) u(n) €D VYn>0 = z(n) € E Vn>0.

In this paper we shall be addressing to the following problems.

(I) Give a necessary and sufficient condition, on the model (M), for the existence of a
pair (D, E) for which property (S) holds.

(IT) Given a pair (D, E), describe the class of all models (M) such that property (S) holds.

The motivation for considering these problems is twofold. First, from the point of
view of stability theory, it is shown in section 3 that the necessary and sufficient condition
in problem (I) is actually uniform stability (here we are using “uniform stability” as a
generic term meaning any of the equivalent concepts of stability in the uniform topology
—e.g. see [3]). Secondly, from the point of view of optimal control theory, the solution of
problems (I) and (II) is, in fact, fundamental for the existence of optimal strategies under
state and control constraints (e.g. see [4,5]).

The paper is organized as follows. Notation and terminology are posed in section 2.
Problem (I) is solved in section 3. The description required in problem (II) is given in
section 4, whenever the sets D and E are (closed or open) balls in X. However, such a
description comes out in terms of the norm of an operator F on £, (X) which, in general,
is not straightforward computable. Section 5 deals with such a computational task, and
an illustrative example is given in section 6.

2. NOTATION AND TERMINOLOGY

Given a linear space Y, L[Y] will stand for the algebra of all linear transformations
from Y into itself. Throughout this paper X will stand for a Banach space, and B[X] will
denote the Banach algebra of all bounded linear operators from X into itself. We shall
use || || to denote both the norm in X and the induced uniform norm in B[X]. By an
o-neighbourhood in X we mean a subset of X for which the origin is an interior point,
and by an o-ball in X we mean a local o-neighbourhood in X (i.e. B, is an o-ball in
X iff it is a nontrivial closed or open ball of radius p > 0 centered at the origin in X).
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Let s(X) be the linear space of all X-valued sequences x = {z(n) € X;n > 0}. For any
AC X, set s(A) ={x € s(X) : z(n) € A ¥n>0}: the subset of s(X) made up of all
A-valued sequences. As usual, set (o (X) = {x € s(X) : sup,,~¢ || z(n) || < oo} which,
with its standard norm || x ||, = sup,s¢ || #(n) ||, is the Banach space of all bounded
X-valued sequences. Note that A is bounded in X iff s(A) C £oo(X), and A is a bounded
o-neighbourhood in X iff s(A) is a bounded o-neighbourhood in ¢ (X). In particular, B,
is an o-ball (open or closed) in X iff s(B,) is an o-ball (open or closed, respectively) in
(5 (X), and these balls have the same radius.
Given a sequence of operators in B[X]|, F = {F(k) € B[X];k >
®(k,k) = I (throughout this paper I will denote the identity in B[X]
k > 0, and

0} € s(B[X]), set
) for every integer

for every integers 0 < j < n, so that

®(n,j) = ®(n, k) ®(k, j)

for every integers j,k,n such that 0 < 7 < k < n. The double sequence of operators
{®(n,j) € B[X];0 < j < n} is usually referred to as the evolution operator process
associated with F € s(B[X]). Now consider a sequence of (linear) maps {F, : s(X) —
X;n > 0} recursively defined as follows.

fn—‘rl:F(n)fn—}_gn—i—lv ‘}tO:gOv

where, for each n > 0, the (linear) map &, : s(X) — X is such that &,u = u(n) for all
u = (u(0),u(1),...) € s(X). It is readily verified by induction that

Fn=> @0,  ¥n=0.
j=0

Such a sequence defines a transformation F : s(X) — s(X), given by

Fu = (Fou, Fiu,...) Vu € s(X),

which is clearly linear. F € L[s(X)] will be referred to as the input-state operator matriz
associated with F € s(B[X]). Note that F is invertible. Actually, F~! € L[s(X)] is given
by

Flx = (50}(, (81 — F(O)go)X, (82 — F(l)gl)x, .. ) Vx € S(X)

Both F and F~! will be identified with the following infinite matrices of operators.



I I
F(0) ! ~F(0) I

F—| @20 FQ1 I 1 —F() I
®(3,0) ®(3,1) F(2) I ’ —~F(2) I

We shall use the same notation F (F~1!) for the restriction of F (F~1) on £+ (X) C
s(X). If F € Blloo(X)] (F~! € Bllso(X)]) then, according to our previous convention,
| Fllo (IF o) will stand for the induced uniform norm of F (F~!) in B[ls(X)].
Finally note that F € £ (B[X]) iff sup,q || F'(k) || < 0o, and (as it is readily verified)
FleBlla(X)] = |F o =1+supll F(h) |,
k>0
FeBlUx(X)] = [F o <1 F e

Hence

FeBlx(X)] = Felo(BX]) <« F'eBlu(X)]

and the converse of the above unilateral implication fails (e.g. take F constantly equal to
I, so that F,u = (n + 1)u for any sequence u € £, (X) constantly equal to an arbitrary
ue X).

3. D-INPUT E-STATE STABILITY

Consider an operator sequence F = {F(k) : k > 0} € s(B[X]). Given u = {u(n) :
n > 0} € s(X), let x = {z(n) : n > 0} € s(X) be recursively defined by the following
nonautonomous inhomogeneous difference equation in X.

(1-a) z(n+1) = F(n)z(n) + u(n+1),  z(0) = u(0),

whose solution is

(1-Db) z(n) =) @(n,ju(j) Vn=>0,
so that

(1—c¢) x = Fu.
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Here, {®(n,j) € B[X]; 0 < j <n} and F € L[s(X)] are the evolution operator process
and the input-state operator matrix, associated with F € s(B[X]), respectively. Now take
any integer k > 0 and an arbitrary x € X. Set v € s(X) such that v(k) =z and v(j) =0
for every 0 < j # k, so that y = Fv is given by y(n) = ®(n,k)z for every n > k and
y(n) = 0if 0 < n < k, according to (1-b). Set zr(n) = y(k 4+ n) for every n > 0, and
xi = {zx(n) : n >0} € s(X). Thus, for each k& > 0,

(2—Db) zp(n) = ®(k+n,k)x Vn >0,

which is the solution of the following nonautonomous homogeneous difference equation in
X:

(2 —a) zp(n+1) = F(k+ n)zk(n), zr(0) = .

Definitions. The (free) model (2), or equivalently the sequence F € s(B[X]), is uniformly
asymptotically equistable if the family of sequences {x; € s(X) : kK > 0} is uniformly
equiconvergent to zero, or equivalently if

lim sup ||®(k + n,k)|| = 0.

n—oo ]CZO
The (forced) model (1), or equivalently the sequence F € s(B[X]), is bounded-input
bounded-state stable if F € L[s(X)] is oo (X )-invariant. That is, if F (L (X)) C loo(X),
or equivalently if F € L[{+(X)], which means that

uclo(X) = Fucel(X).

It is D-input E-state stable if there exist bounded o-neighbourhoods D and E in X such
that F(s(D)) C s(E), which means that

ucs(D) = Fues(h)

(i.e. u(n) € D Vn > 0= z(n) € E Vn > 0). Note that D-input E-state stability does
not require nor ensures that the above implication does hold for every pair of bounded

o-neighbourhoods. In fact, as we shall see later in this section, it never does; and it holds
for D = F if and only if F = 0.

There is in current literature a fairly complete collection of necessary and suffi-
cient conditions for uniform asymptotic equistability, which turns out to be equivalent to
bounded-input bounded-state stability. We display below just a few of those well-known
results that will be required later in the sequel (for proof see e.g. [3]).

Proposition 1. The following assertions are equivalent.
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a) F is uniformly asymptotically equistable.

(

(b) limy— oo SUPyg |®(k + n, K)||Y/™ < 1.
(
(d
(e

)
)
¢) SUP,>g i |®(n,5)||P < oo for an arbitrary p > 0.
) F is bounded-input bounded-state stable.

)

|Fulloo < pllufjes Yu € loo(X),  for some p > 0.

It is worth noticing that, for time-invariant models, which means that F € s(B[X])
is a constant sequence, say F'(k) = F' € B[X] for every k > 0, the definition of uniform
asymptotic equistability is naturally reduced to uniform asymptotic stability,

lim || F™ || =0,
n—oo
which is the time-invariant version of (a); and assertions (b) and (¢) become, respectively,

re(F) <1,

oo
Z | F7 ||” < oo for an arbitrary p >0,
=0

where r,(F) = lim,_ || F" Hl/n is the spectral radius of F' € B[X]. Let us also

remark that it is implicitly assumed in (a) and (b) that the nonnegative sequence
{supp>o |®(k + n,k)|[;n > 0} is well-defined (i.e. supgsq||P(k + n,k)|| < oo for every
n > 0), so that (for n = 1) supyq [|F(k)|| < co. That is, F € £ (B[X]). Moreover, also
note that F € Bl[ls(X)] iff (e) holds (actually, ||F|lcc = min{g > 0 : (e) holds }, by
definition). Thus we may add the following further auxiliary results.

Proposition 2. Fach of the assertions below is also equivalent to (a)-(e).
(f) F € B[l (X)].
(g) F,F~ L e Bllo(X)] (ie. F is a topological isomorphism on leo(X)).

Now let us draw our attention to D-input E-state stability, which lies somewhere
between two extremes. One of them is obtained by relaxing the boundedness assumption
on D and the o-neighbourhoodness assumption on E, and the other by assuming that D
and E are both o-balls in X. We shall show that these (aparently weaker at one hand
and stronger on the other hand) two extremes are actually equivalent to D-input E-state

stability. This is important because we can supply a complete characterization of all pairs
(Bs, Be) of o-balls in X for which F(s(Bs)) C s(B:).

Proposition 3. Consider an operator sequence F € s(B[X]). Each of the assertions below
is also equivalent to (a)-(g).
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(h) There exist o-balls Bs and B. in X such that

uc s(Bs) = Fues(Be).
(1) There exist an o-neighbourhood D C X and a bounded set E C X such that

ucs(D) = Fucs(E).
Moreover, if (i) holds, then D C E, so that (i) is equivalent to
(j) F is D-input E-state stable;
and D = FE if and only if F = 0.

Proof. First note that (e) = (h) = (i) trivially. From now on suppose (i) holds. Take
a closed o-ball B, contained in D (whose existence is ensured because the origin is an
interior point of D). Take an arbitrary 0 # u € ((X), and set v = (p/||u | )u €
(o (X). Since ||V|lo = p, it follows that v € s(B,) C s(D). Hence (p/| u |, )Fu =
Fv € s(E), whenever (i) holds. Therefore, Fu = (|| u || /p)Fv € (|| ull/p)s(E) =
s((lull/p)E) C lo(X) (because E is bounded). Thus (i) = (d). Now take u,v € D
and k > 0, arbitrary. Set u,v € s(D) as follows: u(k) = vwand u(j) = 0 for every 0 < j # k;
and v(k) = u, v(k+1) =vand v(j) = 0 if either 0 < j < kor j > k+1. Thus x = Fu and
y = Fv are such that z(k) = u, x(k+1) = F(k)u, and y(k+ 1) = F(k)u + v, according to
(1-b). Since (i) holds, x = Fu € s(FE) and y = Fv € s(E). Thus z(k) € E, so that u € E.
Hence D C E. Moreover, F'(k)u =x(k+1) € E and F(k)u+v =y(k+1) € E. Therefore,
if D = E, then F(k)u € D and F(k)u+ v € D for all u,v € D and every k > 0, which
implies (by induction on n) that nF(k)u € D for all u € D and every k,n > 0. Hence
F(k)u = 0 for all w € D and every k > 0 (because D = FE is bounded). In particular,
pll F(k) || = supjy <, [| F(k)u || = 0 for every k > 0, so that F = 0. On the other hand,
if F = 0, then Fu = u for all u € ¢ (X), so that F(s(A)) = s(A) for every bounded
ACX. m

4. INPUT AND STATE CONSTRAINTS

Since all the stability concepts discussed above are equivalent, we shall use the generic
term uniform stability to refer to any of them. Thus, consider the class

Y ={F € s(B[X]) : Fis uniformly stable }

of all uniformly stable models as in (1) or (2). Recall that uniform stability clearly implies
that F € (o (B[X]). Actually (cf. Proposition 2),

S = {F € (oo (B[X]) : F € B[loo(X)]}.

Now, given a pair (d,¢) of positive numbers, let Bs and B. be either both closed or both
open o-balls, and set



Y5 = {F € s(B[X]) : F(s(Bs)) € s(Be)},

the class of all models as in (1) for which the state sequence remains in a closed (open)
o-ball of radius € whenever the input sequence is constrained to a closed (open) o-ball of
radius ¢ (i.e. u € s(Bs) = x = Fu € s(B.)); and

So5 = {F € s(BIX]) : F~'(s(B:)) C s(Bs)},

the class of all models as in (1) with the following property: the set of all input sequences for
which the state sequence remains in a closed (open) o-ball of radius ¢ is itself constrained
to a closed (open) o-ball of radius § (i.e. x € s(B.) = u = F~!x € 5(Bs)). Our aim in
this section is to characterize each of these classes.

Proposition 4. For any pair (J,€) of positive numbers,

V5o ={FeX: || Fll,<e/d},
225 = A{F € loo(BIX]) : | F oo < §/e}.

Proof. Let (0,e) be an arbitrary pair of positive numbers. If F € ¥;., then F € X,
because (f) <= (h) in Propositions 2 and 3. Hence d|| F ||, = subyes(p,) [Fullo < &
On the other hand, if F € X is such that J||F||o < €, then ||Fu|o < (6/0)] u ||, for
all u € (X)), so that Fu € s(B.) whenever u € s(Bs) (i.e. F € ¥5.). Similarly, if
F € E;;, then F € (o (B[X]), because F~! € B[lo(X)] <= F € {(B[X]). Hence
el F Moo = Supyey(p.) IF %[l < 6. On the other hand, if F € £ (B[X]) is such that
elF oo <0, then || F~1x||oo < (6/8)|1%]| oo for all x € £ (X), so that F~1x € s(Bs) (i.e.
FeX];). ]

It is worth remarking that, whereas uniform stability is a necessary and sufficient
condition for a given F to belong to ;. for some pair (J,¢), such a condition is not
necessary for F to belong to E;§ for any pair (§,¢). Any F € £, (B[X]) belongs to E;;

for some pair (d,¢). This happens because F~!(s(B.)) may not be an o-neighbourhood
if F ¢ . Actually, F~!(s(B.)) is an o-neighbourhood for every o-ball B, if and only if
F € Blloo(X)] (i-e. if and only if F € ¥). However, in such a case (i.e. for F € ¥),

s(Bjyr) © F 1 (s(Be)) C s(Beyrry) Ve >0,

s(Bs/|iF-1).) € F(s(Bs)) € s(Bsj7).,) V>0,

since, according to Proposition 4,

min {5/5 F e Za,e} = | F oo



min {§/e : F € E;};} = |F oo

5. ESTIMATING || F||o

In order to determine exactly which operator sequences belong to Xs . or to X_ 5, for a
given pair (0, ), we need (according to Proposition 4) to supply an expressmn for H]—" ||oo OF
for || F71|| in terms of {||®(n,;)||;0 < j < n}. As far as the class 25,5 is concerned, this

becomes a trivial task. Actually |F~!|o = 14 supysq|[|F(k)|| for every F € (o (B[X])
(so that, 1 < ||F7Ye and ||F71||oc = 1 & F = 0), as we have already seen in section 1.
Moreover,

Sse € D5 L, Sya=0 if e<§, Y55 =Yy = {0},

for any pair (§ > 0, > 0), according to Proposition 4, since (cf. section 1) [|[F 7w <
| F|loo whenever F € B[lo(X)]. As matter of fact, we can supply tighter lower bounds for

| Fllw=sup sup||2<1>nj u(j)|| =sup sup ||Z‘I’”J u(F)||

lulloe <1120 55 n>0 ufl<<1 555

(F € Blls(X)]); and the search of such bounds is the central theme of this section. Let
us first recall the following trivial bounds for the norm of F € B[l (X)] (finiteness being
ensured according to Propositions 1-¢ and 2-f).

sup | Y @(n, )| < | F o <sup Y [@(n, )] < oo
n>0 =0 "20]-20

Proposition 5. If F € B[l (X)], then

(a) |F oo < sup 1@ (n, j) ZH‘P ke, )71 < 1 F o
,J n
®(n, )0 k=j

If H is a Hilbert space and F € B[l (H)], then
(b) s> @, )* < 117 I
n20 57

Proof. Take an arbitrary integers 0 < j < n such that ®(n,j) # 0 (recall that
®(k,k) # 0 Vk > 0). Thus there exists u € X such that ®(n,j)u # 0. Since
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®(n,j) = ®(n,k)P(k,j) for every j < k < n, it follows that ®(k,j)u # 0 for every
k € [j,n] whenever u € X is such that ®(n,j)u # 0. Hence we get the lower bound for

I F Nl i (a)-

" ®(k, j)u
®(m, k) > D(n, k) —2
o e 12 0m > o 30
®(n,j)u0
= sup [|®(n,j)ul > [|®(n, 5)[| Y 19k, )7
lul| <1 Z II‘P Jul Z
®(n,j)uz0

for every integers 0 < j < n such that ®(n,j) # 0. The remaining result in (a) is readily
verified by noting that {j > 0: F(j) = ®(j +1,5) #0} C {0 <j <n:P(n,j) # 0}, and
recalling that ||F || = sup;>o(1+ [F(j)]). Now, in a Hilbert space setting, we claim
that

(b') dole(nn—k)*< suwp Hsznn— — k)|
k=0

[u]lee <1

for every integers 0 < m < n. In particular, for m = n, we have (by setting j =n — k)

n

D lle NP < sup 1) @(n, j)uls)|?
§j=0

lulleo <1 j=0

for every n > 0, which ensures the lower bound for || F Hio in (b). Next we shall verify
the claimed inequality in (b’). Take an arbitrary n > 0 (otherwise, i.e. if n =0, (b") holds
trivially), and note that the inequality in (b") holds for m = 0. Suppose it holds for some
m € [0,n — 1] then, according to the parallelogram law,

m—+1
Z|I<I>nn— )|? = Z||<I>nn— B+ 1®2(n,n —m —1)|?
k=0
< sup HZ@ n,n —k)u(n —k)||? + sup ||®(n,n —m — 1)v|?
lulloe <1 lol<1

= i (1> @(n,n— k)u(n — k)| + [|@(n,n —m — Du(n —m —1)|*)
ullest p—g

< sup HZ(IDnn— (n—k)+®(n,n—m—Duln—m—1)|>

||11||oo<1

l\.’)l»—t
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+ sup || DD @(nn—k)uln — k) = @(n.n —m — Lu(n —m —1)|]
k=0

lullee <1

Since the above quantities between brackets are identical, the inequality in (b’) holds for
m + 1 € [1,n], which concludes the proof by induction. |

Now take arbitrary integers 0 < j < n, and consider the following Properties.

(P1) [ (n, )| = [[@(n, k)| |k, 5)] Vk € (4, n),

n—1
(P2) le(n. )l = T IF®)]-
k=j

It is a simple matter to verify that (P;) and (P2) are equivalent. Therefore, we shall refer
to them as “Property (P)”. A sequence F € s(B[X]) will be called collectively normaloid if
Property (P) holds for every integers 0 < j < n. It will be called collectively paranormaloid
if Property (P) holds for every integers 0 < j < n such that ®(n,j) # 0. Recall that an
operator F' € B[X] is normaloid (i.e. 7,(T) = ||F||, e.g. see [2: p.267]) if and only
if || F™ || = || F||" for every n > 0. We shall say that ' € B[X] is paranormaloid iff
|E™|| = ||F||™ for every n > 0 such that ||[F™|| # 0. Thus, a constant sequence F =
{F(k) = F;k > 0} € s(B[X]) is collectively normaloid (collectively paranormaloid) if and
only if F' € B[X] is normaloid (paranormaloid). Note that, if F € s(B[X]) is collectively
normaloid, then it is obviously collectively paranormaloid. However, the converse fails. For
instance, take a sequence F € s(B[X]) constantly equal to a nilpotent operator F' € B[X],
say of order 3 (i.e. F,F? # 0 and F3 = 0, so that r,(F) = 0). Thus, since F' is not

normaloid, F is not collectively normaloid. However, if F is such that ||F?| = ||[F||? (e.g.
0 o O

take F = | 0 0 a | € B[@®] for any 0 # a € @, so that |[F?|| = |F||*> = |a|?> and
0 0 O

F3 = 0), then it is paranormaloid, and so F is collectively paranormaloid.

Proposition 6. IfF € X is collectively paranormaloid, then

n n—1 n—1
|1Flloe =sup Y [[@(n, i)l = L+sup > JTIFE)I.
n>0" n>1 - .
=" 4=0 = 7=0 k=j
®(n,j)#0

Proof. Take arbitrary integers 0 < j < n for which ®(n,j) # 0, so that ®(k, j) # 0 for
every k € [j,n]. Since F € ¥ is collectively paranormaloid, F € B[l (X)] and Property
(P1) holds (note that for kK = j or k = n the identity in (P1) holds trivially). Thus
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| (n, 5) HZHQ”CJ 1! ZHq’nk’

so that the lower bound for || F||s in Proposition 5-a coincides with the upper bound
SUp,, >0 Z?:o ||®(n, j)||. Moreover, since Property (P2) holds whenever ®(n, j) # 0,

n—1

IIF\Ioo—supZIICI’nJII—lJrsup Z 1@ (n, )

‘I’(n,y)#o

=1+ sup Z H||F

n>1
‘I’(n,J#O

6. AN ILLUSTRATIVE EXAMPLE

To illustrate the estimates for ||F|~ given in the preceding section, we shall con-
sider here a simple example regarding time-invariant models operating in a Hilbert space
H. Thus, let F € X be a nontrivial uniformly stable sequence constantly equal to
F € B[H] (F #0), so that r,(F') < 1. Let

A= sup IF'“I|ZHFJ|| '

7=0
HF’“H#O

= (S,
5=0

be the lower bounds for ||F ||~ in Proposition 5-a and 5-b, respectively. Let u be the upper
bound sup,,>q Y5_o [|®(n, )| < 00 for || F]|e, so that

p=>_|IF.
§=0

First note that, if F' is paranormaloid, then Proposition 6 ensures that

(1—||F|)~t, if F is normaloid,
A = || Flloe =p =4 mr+1, if F'is not normaloid and ||F|| =1,

1—||F|™ Pt

—iFr— i £ is not normaloid and I|F|| # 1,
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where mp := max{k > 0 : ||[F*|| # 0} whenever F is paranormaloid but not normaloid.
Moreover, since ||F'|| # 0,

s N 1/2 i .
o= D IFIP) < >0 IFIP =M
Jj=0 7=0
(17| #0 | 7|0

Next, let us consider a concrete example. Set H = {5, the Hilbert space made up of
all one-sided square-summable complex sequences. Let

F = shift(a, 3,0,...) € B[]

be a weighted shift on f5, with nonnegative weighting sequence {a, 3, 0,...}. Suppose
0 < 3 < a, so that (e.g. see [1: p.234]) |F|| = a and |[F*|| = a8*~! for every k > 1.
Hence 7, (F) = (. Since F' # 0 and r,(F") < 1, it follows that 0 < a and § < 1. That is,
suppose the pair (a, 3) belongs to

Q:={(,B)eR?*: 0<pB<a, 0<a <1},
and note that, for any («, ) € Q,

N=1+a?/(1-F6%), p=1+a/(1-0)

_{1+a if a>p/(1-p),
|1y -B)>1+a ifa<B/(1-H).

Let 3y (=~ 0.69) be the root of 3% —23%—-23+2 = 0in (0,1). Since the functions 8/(1—3),
21 — 82)/32, and [B(1+ B)(2 — B)/(1 — B)]/2 meet at § = fo, let ag (= 2.2) be their

common value at 8 = . Now consider the following partition of €2
Poi={(a,8) €Q: a=2(1— )/ > ag or a = [B(1+ B)(2 - B)/(1 - A"/ = ag},
O ={(,8)€Q: a>2(1-p6%/8 and a>[B1+B)(2-78)/(1- 5)]1/2}7

F={(a,8)€eQ: p=0 or p=a},
Qg IZQ\(FUF()UQl).
It is readily verified that, for any («, ) € Q,

A2 < U, and A =p <= (a,pB) €.

Actually, if 3 = 0 then F is nilpotent of order 2 (i.e. F? = 0), and F is normaloid whenever
B = a. Hence, if (a,3) € T" then F' is paranormaloid, so that
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[Flloo=pn if  (a,B) €l
Moreover, it is also readily verified that, for any (o, 3) € €,

Ao <A = (a,f)€QUT,
=X\ = (,8) €T,

A1 < Aa <— (aa/B) € Q.
Therefore, we get the following estimates for ||F||oo:

M| Flle < if (a.B) €Uy,

A < | Flle < if (o, B8) € 21 UT.
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